
Multi-Tenancy
Development, Challenges & Solutions.

Halil İbrahim Kalkan
Co Founder of Volosoft

GitHub: @hikalkan

Twitter: @hibrahimkalkan

Email: halil.kalkan@volosoft.com

aspnetboilerplate.com

• Multi-Tenancy

• Modular & Layered Architecture

• Domain Driven Design

• Free & Open Source

• 5+ years of continuous development.

• 5,500+ stars on GitHub.

• 700,000+ downloads on NuGet.

Agenda

▪ SaaS, multi-tenancy, benefits & difficulties.

▪ Multi-Tenancy: High level architecture / database separation.

▪ How to determine & change the current tenant.

▪ Implementing database & data isolation.

▪ Temporarily enable/disable multi-tenancy.

▪ Handling database migrations.

▪ SaaS features and declarative feature check.

▪ Summary

SaaS
Software as a Service

On-Premise / IaaS / PaaS / SaaS

SaaS
Concepts

▪ Tenant: An organization that uses the application/service
(and pay for it)

▪ Host: The organization that is responsible to provide the service
and manage all the tenants

Why Multi-Tenancy?

▪ Maximum Utilization / Low Costs

▪ Easy to add a new client (tenant)

▪ All clients use the same application & version

▪ Easier maintenance & upgrade

Difficulties

▪ Data Isolation

▪ Performance: One tenant’s heavy
usage may effect the other tenants

▪ Configuration & customization per
tenant

▪ Security

▪ Backup (per tenant)

Multi-Tenancy
High-Level Architecture

Deployment / Database Options

Hybrid!

Ideal Multi-Tenant Application

▪ Works exactly like on-premise: Separated users,
permissions, data…

▪ Should be able to work as on-premise too

▪ Should be developed independent from multi-tenancy

Stateless Application Design

▪ Application should be stateless!

▪ Main state origins:

▪ Http Request: Cookie, header, querystring, payload

▪ Authentication Ticket

▪ Database: Relational, non-relational

▪ Cache: Redis, Memcached

Multi-Tenancy
Determine the Current Tenant

Determine the Current Tenant

▪ Sources

▪ Current Claims (if user has been authenticated)

▪ Subdomain (or domain): https://tenancy-name.mydomain.com

▪ Http Header: _tenant = “acme” (for API clients & SPAs)

▪ Http Cookie: _tenant = “acme” (for MVC applications)

https://tenancy-name.mydomain.com/

How to Get/Pass a TenantId?

Ambient Context Pattern

Implementation using AsyncLocal<T>

Change Current Tenant

Change Current Tenant (Nested)

Change Current Tenant

Multi-Tenancy Middleware Implementation

ASP.NET Core Multi-Tenancy Middleware

Change Tenant in a Background Job

Summary

▪ Determine the current tenant from the current HTTP request

▪ Use ambient context pattern to set, change and get the current tenant

▪ Create an ASP.NET Core middleware to set Tenant Id before any action execution

▪ Explicitly set current tenant in a background job

Multi-Tenancy
Database / Data Isolation

Dynamically Select the Connection String

Dynamically Select the Connection String

Dynamically Select the Connection String

MyDbContext
ServiceProvider

(IOC)

Factory Method

Tenant Store DB (Host)

DbContextOptions<MyDbContext>

Repository /

Service

Ambient Tenant

Context

TenantId

Dynamically Select the Connection String

Dynamically Select the Connection String

Data Filtering: Manual Way

Automatic Data Filtering: Repository Pattern

Automatic Data Filtering: Repository Pattern

▪ Pros

▪ Easy to implement

▪ ORM Independent

▪ Cons

▪ Limited – Can be bypassed by directly using DbContext

▪ Limited – Does not work for navigation properties

▪ Open to leak (Repository developer may forget it)

Automatic Data Filtering: EF Core Global Filters

Automatic Data Filtering: EF Core Global Filters

Automatic Data Filtering: EF Core Global Filters

Automatic Data Filtering: EF Core Global Filters

Automatic Data Filtering: EF Core Global Filters

▪ Pros

▪ Natively works with EF Core

▪ Supports navigation properties as well

▪ Cons

▪ Limited – Does not work if you directly work with SQL, stored procedures… etc.

Automatic Data Filtering: Other Options

▪ Row Level Security – Available for SQL Server and Azure SQL Database

▪ Pros: Completely integrated to DBMS, works for everything

▪ Cons: Relatively complex to implement, specific to DBMS

▪ Azure Elastic Database Pool

▪ Pros: Easy to scale

▪ Cons: Only for db per tenant scenario, vendor dependency

Automatic Data Filtering: Row Level Security

Set Session Context while changing the current tenant:

Automatic Data Filtering: Row Level Security

Create a policy to filter/block data

Automatic Data Filtering: Row Level Security

Automatically set TenantId for new entities

Setting Tenant Id for New Entities

▪ In DbContext.SaveChanges()

▪ Get new entities for change tracker,
find IMultiTenant entities,
set current TenantId

▪ Problem: May set wrong tenantId

Setting Tenant Id for New Entities

Safe Way to Manipulate Data

Summary

▪ Dynamically set connection string based on the current tenant for a database per
tenant approach: Register as a factory method

▪ Automatically filter data based on the current tenant for a shared database approach.

▪ Manual way, Repository pattern, EF Core Global Query Filters, SQL Server Row Level
Security (RLS)

▪ Best practice to set Tenant Id for new entities: Set on constructor

▪ Safe way to update an existing entity: Query first

Multi-Tenancy
Enable/Disable

Disable/Enable By Scope

▪ May need to query on all tenants

▪ Can be implemented using ambient
context pattern

▪ Problem: Not easy for multi-database
scenario

Multi-Tenancy
Database Migrations

Schema / Data Migration

▪ Problem for multiple-databases

▪ Solution: Upgrade all in one with a custom tool

▪ Pros: Easy to implement. All tenants are in the same version

▪ Cons: May get too long time for big number of tenants and data. All tenants wait for all
upgrade progress

▪ Solution: Upgrade the application servers immediately, upgrade databases
individually on first access

▪ Pros: Upgrading is distributed to time. A tenant does not wait for another

▪ Cons: First accessing user may wait too much. Even we get timeout exception. Also, we
don’t control the upgrade speed

Schema / Data Migration

▪ Solution: Multiple versions concurrently

▪ Split the application servers into two parts: Upgraded tenants use the new application,
other tenants use the old application

▪ Pros:

▪ Minimum waiting for every tenant

▪ Upgrading may be scheduled for every individual tenant and they can be informed

▪ Allows us to perform A/B tests and previews

▪ Cons

▪ Requires multiple application servers – but reasonable for a big system

▪ Harder to implement, maintain and monitor

Multi-Tenancy
SaaS Features

Feature / Package / Subscription System

▪ Define features of the application. Feature Types:

▪ On/Off: Excel export, Replying by email (for a support app)

▪ Numeric:10 users, 20,000 emails/month

▪ Selection: one of the available options

▪ Group features into packages/editions

▪ Subscribe packages by tenants

▪ Check features: Declarative or by code

Feature Checking

Declarative Feature Check
Implementation Options

▪ MVC Action Filters

▪ Easy to implement. Naturally works within ASP.NET Core

▪ Limited to Controller actions

▪ Method Interception using dynamic proxying (interception)

▪ Works everywhere

▪ Limited to virtual methods

▪ Weaving: Mono.Cecil, Fody, Postsharp… etc.

Declarative Feature Check: Interception

Multi-Tenancy
Summary

Summary

▪ What is SaaS & Multi-Tenancy? Tenant v.s. Host

▪ Benefits: Maximum Utilization, easy to maintain

▪ Difficulties: Isolation, Performance, Customization, Security, Backup (per tenant)

▪ Database Options: DB per tenant, single DB, Hybrid

▪ Ideal Multi-Tenant & Stateless Application Design

▪ Determine the current tenant

▪ Sources to obtain current tenant (HTTP request)

▪ Ambient context pattern & AsyncLocal

▪ Change the current tenant

Summary

▪ ASP.NET Core Multi-tenancy Middleware

▪ Dynamically Select the Connection String

▪ Automatically Filtering Tenant Data

▪ EF Core Global Query Filters

▪ SQL Server Row Level Security

▪ Safe way to insert and update entities

▪ Disable/Enable multi-tenancy

▪ Database migrations

▪ SaaS Features & Dynamic Proxying

Thank you…
Halil İbrahim Kalkan

Github @hikalkan
Twitter @hibrahimkalkan
Email halil.kalkan@volosoft.com

Slide Source: https://github.com/hikalkan/
presentations/tree/master/2018-11-22-Multi-Tenancy

