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Nope. Not magic!
It’s only an abstraction…



The Law of Leaky Abstractions

"All non-trivial abstractions, to some degree, are leaky."
- Joel Spolsky



The issue types

qStorage & relevant algorithms
qIndexing & Queries
qNetwork



1-a) Storage
It just works, no?



Here is a riddle…  hint: storage!

RavenDB server-wide backup failed
• The instance had multiple databases in single instance
• Plenty of memory and cores, resource usage is small
• Nothing else was running on the machine EXCEPT RavenDB
• Scheduled backup tasks fail soon after they started



The backup tasks started at the 
same time!



Also, there were gazillion of databases
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Investigation: disk queue length
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Disk Queue Length – what and how?

• Dashboards
• Monitoring
• Windows Perf Monitor





RavenDB’s failing backups

Approx. 200 databases doing backups at the same time WILL 
cause storage saturation!



The solution was rather simple



Also: low memory matters!
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What can we do about storge issues?

• Load test database-related code
• Write-through throughput
• Enough IOPS for expected production load (disk queue length is <= 2)

• Cloud à provision IOPS  (ensure disk performance)
• Load-test application to find limits of the system
• Make sure no low-memory situations happen



About storage benchmarks

• Sysinternals Process Monitor
• CrystalDiskMark
• ATTO Disk Benchmark
• (Many) other tools



CrystalDiskMark

• Random/sequential I/O?
• Queues/Threads (queue depth/length)
• Size of each read/write



We will discuss some more 
benchmarks later



1-b) Storage
Effect of hardware of algorithm performance



A tale of two primary keys

• One embedded transactional database engine (LMDB)
• 100 transactions, 100 key/value writes per transaction
• Two databases, keys and values have the same size
• One uses sequential keys (using Win32’s UuidCreateSequential() )
• One uses random keys (using Win32 UuidCreate() )



A tale of two primary keys
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A tale of two primary keys

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

0 2 4 6 8 10 12 14 16

To
ta

l s
ee

k 
la

te
nc

y 
pe

r T
X

Transaction #

Total seek latency per TX

Random

Sequential



Process Monitor
Types of OS operations to listen (file activity, network activity, etc)

Types of operations



Why?



Storage algorithms (page-oriented storage engines)

• B-tree, B+ Tree
• Optimized for reads
• Optimized for sequential data



B+ tree keys

Sequential keys Non-sequential keys



The cost of hops in the tree
Disk seek

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Sequential reads



Minimize performance impact of keys

• Sequential keys allow better performance
• 1,2,3,4,5
• Users/1, Users/2, Users/3

• B-Trees are used to store data AND indexes
• Query performance!



1-c) Storage
Data structure performance



The tale of an occasionally slow database

• Sometimes, Cassandra database was fast and sometimes not
• This happened non-deterministically

A page in
Cassandra

documentation!

https://docs.datastax.com/en/dse-trblshoot/doc/troubleshooting/slowReads.html



Storage algorithms (log-structured storage engines)
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Storage algorithms (log-structured storage engines)

Users/1

Users/3

In-memory Storage

Users/3

Users/5

Users/22
Users/3

Insert users/44

Users/44



Storage algorithms (log-structured storage engines)
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Storage algorithms (log-structured storage engines)
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Storage algorithms (log-structured storage engines)
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Storage algorithms (log-structured storage engines)
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Storage algorithms (log-structured storage engines)
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Storage algorithms – LSM Tree compaction
This is roughly O(n*log(n)) operation!
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Storage algorithms – LSM Tree compaction

In-memory Storage
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Performance depends on compaction

• Compaction strategies à WHEN compaction is triggered?
• Leveled à optimization for inserts
• SizeTiered à optimization for reads
• Time-window  à optimization for TimeSeries/immutable data

CQL



Different databases have specific options to 
optimize performance
For example
• MS-SQL index optimization
• RavenDB custom indexes
• MongoDB Aggregation Pipelines



1-d) Storage
Transaction implementation & performance



ACID guarantees!
All operations either succeed or not
• Atomicity

Data is consistent BEFORE and AFTER transaction
• Consistency

Multiple transactions do not interfere each other
• Isolation

Even if system failure happens, transaction is recorded
• Durability



ACID guarantees!

• Note: not all DBs support it
• All of RDBMS
• Some NoSQLs – RavenDB, LevelDB, LMDB



Write-ahead log (WAL) - Atomicity, Durability

Put "A" Put "B" Commit Put "X" CommitWAL

Data Storage

Flush

Writing



Write-ahead log (WAL)

• "Write-Through" writes – no caching (otherwise no durability!)
• Lots of small writes (overhead of each write)

Write-Through

Volatile 
BufferRegular Write Periodic Flush



Relevant storage benchmarks



ATTO Disk Benchmark
Benchmarking modes



Buffered vs. Write-through

With buffers and caching (GBs/sec) No caching, Write-Through (MBs/sec)
NVMe SSD (Samsung 860 EVO m.2)



Storage effect on transactions

• Slow storage throughput = bottleneck on transactions
• Write-through performance = transaction throughput



2-a) Indexing & Queries
Query complexity



Are those queries different?



Let’s start from something… simple.



First, we define an index

We create an index that covers city and country fields of ShipTo



Then we do some queries

Fetching orders that were shipped to Paris or Lyon



So far so good…



And another query

Fetching orders that were shipped to all of France



It’s a gotcha!



Index Scan vs. Collection Scan

Collection Scan
• O(n) scan

Index Scan
• O(log(n)) seek



Why?

Field 1 Field 2

Lyon France

Paris France

Oslo Norway

In some databases (like MongoDB)
• Indexed fields are concatenated into single index key 
• Filtering only by prefix

Index Key Record IDs

LyonFrance [7],[1],[4]

ParisFrance [5],[6]

OsloNorway [12],[2],[9],[34]

The values are concatenated!



Why?

Field 1 Field 2

Lyon France

Paris France

Oslo Norway

In some databases (RavenDB, any Lucene-based index)
• Indexed terms stored separate
• Filtering by one or both fields in any order (union/intersect as needed)

Index Key Record IDs

Lyon [7],[1],[4]

Paris [5],[6]

Oslo [12],[2],[9],[34]

Index Key Record IDs

France [7],[1],[4],[5],[6]

Norway [12],[2],[9],[34]

ShipTo.City Index

ShipTo.Country
Index



Collection/table scans are easily overlooked

Collection scan - development
• Small amount of data
• Extremely small query latency

Collection scan - production
• Large amount of data
• HUGE latency (quite often!)

Latency: 50ms vs 50 hours



2-b) Indexing & Queries
More about indexing



Indexing

• Indexes are stored as trees (usually B-trees)
• Updates have non-trivial complexity!

https://commons.wikimedia.org/wiki/File:Trie_example.svg



Indexing

Search time complexity (WHERE clause):
O(log(N)) + O(log(M)) + O(Max(K,P))
Where:
• N and M are amount of rows in indexes
• K and P are result sets of index searches



And if we use RDBMS, things become even 
more interesting... 

Join Algorithm Complexity

Merge Join O(n*log(n) + m*log(m))

Hash Join O(n + m)

Index Join O(m*log(n))



And if we have a non-trivial query...

https://dev.to/tyzia/example-of-complex-sql-query-to-get-as-much-data-as-possible-from-database-9he

Those are 10 JOIN statements!



…we have complexity between 
O(log(n)) and O(too much)!
More often than not it is O(too much)…



What can (should!) we do?

• RDBMS
• Proper indexing (kinda obvious,  but still J)
• Optimize (remove unnecessary JOINs – depends on business logic)
• Reduce query complexity

• Replace ‘row by row’  cursors with set based queries
• Reduce the amount of work queries do (for example, unnecessary sub-queries)
• Remove ORDER BY where it makes sense (huge overhead)
• Other optimizations are possible

• NoSQL
• Proper modeling
• Well planned indexing



2-c) Indexing & Queries
Indexes (sometimes) have complexity too!



Indexing complexity



Indexing complexity



Indexing complexity

• As you can see, indexing has its own complexity
• More often than not it can be optimized



3-a) Network
Distributed system fallacy: Bandwidth is infinite



Here is a riddle: why a query with 100 results 
takes several seconds to complete?

Hint: the request spends < 10ms on the server



The investigation

1. Look at query latency on the server



The investigation

2. Look at Fiddler timings Response Size

Latency



Network bandwith is not infinite!

3mb 
document

2mb 
document

5mb 
document

Query Results

Database Client API



Solution: server-side projections (NoSQL)

Server-side Projection

RQL



Solution: server-side projections (NoSQL)

Server-side Projection

MongoDB API



3-b) Network
Distributed system fallacy: Latency is zero



Also… database requests can be an 
interesting issue…



Network overhead

https://github.com/dajuric/simple-http

TCP handshake



Network overhead

Round Trip Time (RTT)
• Physical distance (insignificant for LANs)
• Bandwidth
• Network hops

Round-trip Time



What can we do?

• Refactor to reduce number of requests (kinda obvious, but still…)
• NHibernate – Future Queries
• Entity Framework - QueryFuture
• RavenDB – Lazy Queries



May sound trivial, but…

Do take a look at database traffic while stress testing and if possible in 
production too. 
• Fiddler
• Wireshark
• Profilers
• Any other tool to inspect traffic



To sum it up

• Databases are abstractions
• Abstractions are leaky and might be the cause of perf issues
• Such perf issues can be dealt with (if we know about the "leak"!)



Questions?

michael.yarichuk@hibernatingrhinos.com

@myarichuk
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