
Why databases cry at night
Michael Yarichuk

Magic?

This Photo by Unknown Author is licensed under CC BY-NC-NDThis Photo by Unknown Author
is licensed under CC BY-SA

Query

https://dylan73.deviantart.com/art/Magic-Box-113632806
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://commons.wikimedia.org/wiki/File:Wikipedia_User-ICON_byNightsight.png
https://creativecommons.org/licenses/by-sa/3.0/

Nope. Not magic!
It’s only an abstraction…

The Law of Leaky Abstractions

"All non-trivial abstractions, to some degree, are leaky."
- Joel Spolsky

The issue types

qStorage & relevant algorithms
qIndexing & Queries
qNetwork

1-a) Storage
It just works, no?

Here is a riddle… hint: storage!

RavenDB server-wide backup failed
• The instance had multiple databases in single instance
• Plenty of memory and cores, resource usage is small
• Nothing else was running on the machine EXCEPT RavenDB
• Scheduled backup tasks fail soon after they started

The backup tasks started at the
same time!

Also, there were gazillion of databases

SAN
Storage

Database
A

Database
B

Database
C

Database
D

Database
E Database

F

Database
G

...

Database
FF

Investigation: disk queue length

16
KB

8
KB

10
KB 16

KB

12
KB

12
KB

Disk Queue Length

Disk Write

Disk Queue Length – what and how?

• Dashboards
• Monitoring
• Windows Perf Monitor

RavenDB’s failing backups

Approx. 200 databases doing backups at the same time WILL
cause storage saturation!

The solution was rather simple

Also: low memory matters!

Low
memory

Use paging
file more

Load on
storage

What can we do about storge issues?

• Load test database-related code
• Write-through throughput
• Enough IOPS for expected production load (disk queue length is <= 2)

• Cloud à provision IOPS (ensure disk performance)
• Load-test application to find limits of the system
• Make sure no low-memory situations happen

About storage benchmarks

• Sysinternals Process Monitor
• CrystalDiskMark
• ATTO Disk Benchmark
• (Many) other tools

CrystalDiskMark

• Random/sequential I/O?
• Queues/Threads (queue depth/length)
• Size of each read/write

We will discuss some more
benchmarks later

1-b) Storage
Effect of hardware of algorithm performance

A tale of two primary keys

• One embedded transactional database engine (LMDB)
• 100 transactions, 100 key/value writes per transaction
• Two databases, keys and values have the same size
• One uses sequential keys (using Win32’s UuidCreateSequential())
• One uses random keys (using Win32 UuidCreate())

A tale of two primary keys

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16

of

 se
ek

s p
er

 T
X

Transaction #

B-Tree seeks per write TX

Random

Sequential

A tale of two primary keys

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

0 2 4 6 8 10 12 14 16

To
ta

l s
ee

k
la

te
nc

y
pe

r T
X

Transaction #

Total seek latency per TX

Random

Sequential

Process Monitor
Types of OS operations to listen (file activity, network activity, etc)

Types of operations

Why?

Storage algorithms (page-oriented storage engines)

• B-tree, B+ Tree
• Optimized for reads
• Optimized for sequential data

B+ tree keys

Sequential keys Non-sequential keys

The cost of hops in the tree
Disk seek

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Sequential reads

Minimize performance impact of keys

• Sequential keys allow better performance
• 1,2,3,4,5
• Users/1, Users/2, Users/3

• B-Trees are used to store data AND indexes
• Query performance!

1-c) Storage
Data structure performance

The tale of an occasionally slow database

• Sometimes, Cassandra database was fast and sometimes not
• This happened non-deterministically

A page in
Cassandra

documentation!

https://docs.datastax.com/en/dse-trblshoot/doc/troubleshooting/slowReads.html

Storage algorithms (log-structured storage engines)

Users/1

Users/3

In-memory Storage

Users/3

Users/5

Users/22
Users/3

SSTable SSTable SSTable

Usually a B-Tree or Skip List

Storage algorithms (log-structured storage engines)

Users/1

Users/3

In-memory Storage

Users/3

Users/5

Users/22
Users/3

Insert users/44

Users/44

Storage algorithms (log-structured storage engines)

Users/1

Users/3

In-memory Storage

Users/5

Users/3

Users/22
Users/3

Update users/3

Users/44

Users/3
(update)

Storage algorithms (log-structured storage engines)

Users/1

Users/3

In-memory Storage

Users/5

Users/3

Users/22
Users/3

Delete users/5

Users/44

Users/3 (update)

Users/5 (delete)

Storage algorithms (log-structured storage engines)

Users/1

Users/3

In-memory Storage

Users/5

Users/3

Users/22
Users/3

Flush!

Users/44

Users/3 (update)

Users/5 (delete)

Storage algorithms (log-structured storage engines)

Users/1

Users/3

In-memory Storage

Users/5

Users/3

Users/22
Users/3

(appended at the end)

Users/44

Users/3 (update)

Users/5 (delete)

Storage algorithms (log-structured storage engines)

Users/1

Users/3

In-memory Storage

Users/5

Users/3

Users/22
Users/3

Reading requires searching ALL SSTables!

Users/44

Users/3 (update)

Users/5 (delete)

Storage algorithms – LSM Tree compaction
This is roughly O(n*log(n)) operation!

Key/Value 1

Key/Value 3

Key/Value 5

Key/Value 3

Key/Value 9

Key/Value 12

Key/Value 5

Key/Value 12

Key/Value 18

Key/Value 1

Key/Value 3

Key/Value 5

Key/Value 9

Key/Value 12

Key/Value 18

TX1

TX2

TX3

Storage algorithms – LSM Tree compaction

In-memory Storage

Users/1
Users/3

Users/22
Users/44

After compaction

Performance depends on compaction

• Compaction strategies à WHEN compaction is triggered?
• Leveled à optimization for inserts
• SizeTiered à optimization for reads
• Time-window à optimization for TimeSeries/immutable data

CQL

Different databases have specific options to
optimize performance
For example
• MS-SQL index optimization
• RavenDB custom indexes
• MongoDB Aggregation Pipelines

1-d) Storage
Transaction implementation & performance

ACID guarantees!
All operations either succeed or not
• Atomicity

Data is consistent BEFORE and AFTER transaction
• Consistency

Multiple transactions do not interfere each other
• Isolation

Even if system failure happens, transaction is recorded
• Durability

ACID guarantees!

• Note: not all DBs support it
• All of RDBMS
• Some NoSQLs – RavenDB, LevelDB, LMDB

Write-ahead log (WAL) - Atomicity, Durability

Put "A" Put "B" Commit Put "X" CommitWAL

Data Storage

Flush

Writing

Write-ahead log (WAL)

• "Write-Through" writes – no caching (otherwise no durability!)
• Lots of small writes (overhead of each write)

Write-Through

Volatile
BufferRegular Write Periodic Flush

Relevant storage benchmarks

ATTO Disk Benchmark
Benchmarking modes

Buffered vs. Write-through

With buffers and caching (GBs/sec) No caching, Write-Through (MBs/sec)
NVMe SSD (Samsung 860 EVO m.2)

Storage effect on transactions

• Slow storage throughput = bottleneck on transactions
• Write-through performance = transaction throughput

2-a) Indexing & Queries
Query complexity

Are those queries different?

Let’s start from something… simple.

First, we define an index

We create an index that covers city and country fields of ShipTo

Then we do some queries

Fetching orders that were shipped to Paris or Lyon

So far so good…

And another query

Fetching orders that were shipped to all of France

It’s a gotcha!

Index Scan vs. Collection Scan

Collection Scan
• O(n) scan

Index Scan
• O(log(n)) seek

Why?

Field 1 Field 2

Lyon France

Paris France

Oslo Norway

In some databases (like MongoDB)
• Indexed fields are concatenated into single index key
• Filtering only by prefix

Index Key Record IDs

LyonFrance [7],[1],[4]

ParisFrance [5],[6]

OsloNorway [12],[2],[9],[34]

The values are concatenated!

Why?

Field 1 Field 2

Lyon France

Paris France

Oslo Norway

In some databases (RavenDB, any Lucene-based index)
• Indexed terms stored separate
• Filtering by one or both fields in any order (union/intersect as needed)

Index Key Record IDs

Lyon [7],[1],[4]

Paris [5],[6]

Oslo [12],[2],[9],[34]

Index Key Record IDs

France [7],[1],[4],[5],[6]

Norway [12],[2],[9],[34]

ShipTo.City Index

ShipTo.Country
Index

Collection/table scans are easily overlooked

Collection scan - development
• Small amount of data
• Extremely small query latency

Collection scan - production
• Large amount of data
• HUGE latency (quite often!)

Latency: 50ms vs 50 hours

2-b) Indexing & Queries
More about indexing

Indexing

• Indexes are stored as trees (usually B-trees)
• Updates have non-trivial complexity!

https://commons.wikimedia.org/wiki/File:Trie_example.svg

Indexing

Search time complexity (WHERE clause):
O(log(N)) + O(log(M)) + O(Max(K,P))
Where:
• N and M are amount of rows in indexes
• K and P are result sets of index searches

And if we use RDBMS, things become even
more interesting...

Join Algorithm Complexity

Merge Join O(n*log(n) + m*log(m))

Hash Join O(n + m)

Index Join O(m*log(n))

And if we have a non-trivial query...

https://dev.to/tyzia/example-of-complex-sql-query-to-get-as-much-data-as-possible-from-database-9he

Those are 10 JOIN statements!

…we have complexity between
O(log(n)) and O(too much)!
More often than not it is O(too much)…

What can (should!) we do?

• RDBMS
• Proper indexing (kinda obvious, but still J)
• Optimize (remove unnecessary JOINs – depends on business logic)
• Reduce query complexity

• Replace ‘row by row’ cursors with set based queries
• Reduce the amount of work queries do (for example, unnecessary sub-queries)
• Remove ORDER BY where it makes sense (huge overhead)
• Other optimizations are possible

• NoSQL
• Proper modeling
• Well planned indexing

2-c) Indexing & Queries
Indexes (sometimes) have complexity too!

Indexing complexity

Indexing complexity

Indexing complexity

• As you can see, indexing has its own complexity
• More often than not it can be optimized

3-a) Network
Distributed system fallacy: Bandwidth is infinite

Here is a riddle: why a query with 100 results
takes several seconds to complete?

Hint: the request spends < 10ms on the server

The investigation

1. Look at query latency on the server

The investigation

2. Look at Fiddler timings Response Size

Latency

Network bandwith is not infinite!

3mb
document

2mb
document

5mb
document

Query Results

Database Client API

Solution: server-side projections (NoSQL)

Server-side Projection

RQL

Solution: server-side projections (NoSQL)

Server-side Projection

MongoDB API

3-b) Network
Distributed system fallacy: Latency is zero

Also… database requests can be an
interesting issue…

Network overhead

https://github.com/dajuric/simple-http

TCP handshake

Network overhead

Round Trip Time (RTT)
• Physical distance (insignificant for LANs)
• Bandwidth
• Network hops

Round-trip Time

What can we do?

• Refactor to reduce number of requests (kinda obvious, but still…)
• NHibernate – Future Queries
• Entity Framework - QueryFuture
• RavenDB – Lazy Queries

May sound trivial, but…

Do take a look at database traffic while stress testing and if possible in
production too.
• Fiddler
• Wireshark
• Profilers
• Any other tool to inspect traffic

To sum it up

• Databases are abstractions
• Abstractions are leaky and might be the cause of perf issues
• Such perf issues can be dealt with (if we know about the "leak"!)

Questions?

michael.yarichuk@hibernatingrhinos.com

@myarichuk

This Photo by Unknown author is licensed under CC BY-SA.

https://github.com/ravendb/ravendb

https://github.com/myarichuk/PerfDemo-Sequential-vs-Random-Key

mailto:michael.yarichuk@hibernatingrhinos.com
http://mmjgwrites.wordpress.com/
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/ravendb/ravendb
https://github.com/myarichuk/PerfDemo-Sequential-vs-Random-Key

