Why databases cry at night

Michael Yarichuk

Issues

Pull requests

Marketplace

Explore

W »

.
e U3 AT

Michael Yarichuk

myarichuk

Eternal Apprentice...
Edit bio

°)
¢) lIsrael

B4 michael.yarichuk@gmail.com

4

@ http://graymatterdeveloper.com/

Organizations

Overview Repositories 46 Stars 20

Popular repositories

Rhino.Raft

Implementation of Raft protocol for use with RavenDB

@ K11 ¥s

Sharp.Ballistics

Various ballistic calculation related apps, based on .Net port
of a GNU Ballistics Library

JavaScript W3 Y1

uMock

Proof of concept project that (perhaps in the future) w

become an open source alternative to Microsoft Moles/Fakes.

®Cc++ W1

290 contributions in the last year

Jun Jul Aug Sep Oct Nov

Man

Followers 15

Following 2

Customize your pinned repositories

Voron.Graph

Lightweight persisted graph store

@ w10 ¥s

WcfClientFactory

WCF client proxy that is generated at runtime

0O w2

IMap.Popup

Non-intrusive tool for incoming mail alerts. (the alerts are
Outlook style popups)

O W1

Contribution settings ~

Dec Jan Feb Mar Apr Ma

RAVENDSB

Safe by Default, Optimized for Efficiency

Magic Box

This Photo by Unknown Author

is licensed under CC BY-SA This Photo by Unknown Author is licensed under CC BY-NC-ND

https://dylan73.deviantart.com/art/Magic-Box-113632806
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://commons.wikimedia.org/wiki/File:Wikipedia_User-ICON_byNightsight.png
https://creativecommons.org/licenses/by-sa/3.0/

Nope. Not magic!

It’s only an abstraction...

The Law of Leaky Abstractions

"All non-trivial abstractions, to some degree, are leaky."
- Joel Spolsky

The issue types

(AStorage & relevant algorithms
dindexing & Queries
INetwork

1-a) Storage

It just works, no?

Here is a riddle... hint: storage!

RavenDB server-wide backup failed

* The instance had multiple databases in single instance

* Plenty of memory and cores, resource usage is small

* Nothing else was running on the machine EXCEPT RavenDB
* Scheduled backup tasks fail soon after they started

The backup tasks started at the

same time!

Also, there were gazillion of databases

Database
Database E Database
D F
€

Database Database
C
Database
B \ /

patbsse RN > oobese
A Storage FF

Investigation: disk queue length Bottleneck indicator

Active Time (%) Available Space... Total Space (MB)

100.00 57,338 237,860
0.12

Disk Queue Length

12 12 . .
KB KB Disk Write

Disk Queue Length —what and how?

e Dashboards
* Monitoring
e Windows Perf Monitor

'

5 .MAKES ‘ ‘
READS/WRITES SLOW?

imgflip.com

RavenDB’s failing backups

Approx. 200 databases doing backups at the same time WILL
cause storage saturation!

The solution was rather simple

[Database A] [Database B] [Database C] [SAN Storage

E i Backup A | |
' ' p ' ’-‘-
| :
: : Backup B :
s s - a8
5 S S i

E E Backup C >l
R i

Also: low memory matters!

Use paging Load on
file more storage

Low

memory

What can we do about storge issues?

* Load test database-related code
* Write-through throughput
* Enough IOPS for expected production load (disk queue length is <= 2)

 Cloud = provision IOPS (ensure disk performance)
* Load-test application to find limits of the system
* Make sure no low-memory situations happen

About storage benchmarks

 Sysinternals Process Monitor
* CrystalDiskMark
* ATTO Disk Benchmark

* (Many) other tools

=
s
Fil

ile Settings Theme Help Language

CrystalDiskMark

AI’—HI v|[s00miB Vv|[C: 79% (183/232GiB) V|

| Queues Threads

 Random/sequential I/0? an Sequential [z M 1 V]
4KiE Random 4KiB (1) [1 V| [1 V|

Q"1 Random 4KiB (2) [V]| [4 V]

* Queues/Threads (queue depth/length)

;ﬂ Random 4KiB (3) [128v] [8 V]

 Size of each read/write | :
ves| 0.000 '0.000

Sequential access
.”}//\//\//\//\//\//\1/\/ .
1 2 3 4 5 §) 7 8

Random access

L 71 1 21, [-1 - 1 721, |

1 3 7 2 8 ©6 4 5

We will discuss some more
benchmarks later

1-b) Storage

Effect of hardware of algorithm performance

A tale of two primary keys

* One embedded transactional database engine (LMDB)
* 100 transactions, 100 key/value writes per transaction

* Two databases, keys and values have the same size
* One uses sequential keys (using Win32’s UuidCreateSequential())
* One uses random keys (using Win32 UuidCreate())

A tale of two primary keys

B-Tree seeks per write TX

3

8

5

[y
N
o

g

(0]
o

—8— Random

—8-— Sequential

of seeks per TX

N B o]
o o o
|

o

0 2 4 6 8 10 12 14 16

Transaction #

A tale of two primary keys

Total seek latency per TX
0,05
0,045
0,04
0,035
0,03
0,025
—8—Random
0.02 —8—Sequential

0,015

0,01

Total seek latency per TX

0 2 4 6 8 10 12 14 16

Transaction #

Process Monitor

Types of OS operations to listen (file activity, network activity, etc)

Options

sinternals: www.sysinternals.com

& Process Monitor - Sy
File Edit Event Filter Tools
FE ABRE ¥
Time ... Process Name
12:10:... 'N- SequentialVsR...
12:10:... 'N- SequentialVsR...
12:10:... 'N- SequentialVsR...
12:10:... 'B-SequentialVsR...
12:10:... 'B-SequentialVsR...
12:10:... "W- SequentialVsR...
12:10:... 'W- SequentialVsR...
12:11:... 'B- SequentialVsR...
12:11:... 'N- SequentialVsR...
12:11:... 'B- SequentialVsR...
12:11:... 'B-SequentialVsR...
12:11:... 'B-SequentialVsR...
12:11:... 'B-SequentialVsR...
12:11:... "B- SequentialVsR...
12:11:... W- SequentialVsR...
12:11:... 'B- SequentialVsR...
12:11:... 'B- SequentialVsR...
12:11:... 'B- SequentialVsR...
12:11:... 'B-SequentialVsR...
12:11:... 'B-SequentialVsR...
12:11:... 'B-SequentialVsR...
12:11:... "B- SequentialVsR...

A® B

PID Operation

2216 [BAQuerySecurityFile

2216 [BACloseFile

2216 gOueryNamelnfonnation File
2216 [BhQueryNamelnformationFile
2216 BAReadFile

2216 BAReadFile

2216 [BhQueryNamelnformationFile
2216 [BAReadFile

2216 [BACreateFile

2216 [Bh LockFile

2216 [2AQueryStandardinformationFile
2216 [Bh SetEndOfFileInformationFile
2216 [Bh SetAllocationInformationFile
2216 B\ CreateFileMapping

2216 [BhQueryStandardinformationFile
2216 B\ CreateFileMapping

2216 gQuerylnfomationVolume
2216 [BAQueryAllinformationFile

2216 [FAReadFile

2216 BhCreateFile

2216 BAReadFile

2216 QWnteFle

e e e . —

Types of operations

Path

C:\Windows\System32\msvcp 140.dll
C:\Windows\System32\msvcp 140.dll
C:\Windows\System32\sechost dll
C:\Windows\System32\sechost dll
C:\Windows\System32\msvcp 140 dll
C:\Windows\System32\msvcp 140 dll

C:\Users\Michael HRHINOS\source're...

E:\$Secure:3SDS:SDATA

E:\data\Imdb2\random\lock mdb
E:\data\Imdb2\random\lock mdb
E:\data\Imdb2\random\lock mdb
E:\data\Imdb2\random\lock mdb
E:\data\Imdb2\random\lock mdb
E:\data\lmdb2\random“‘lock mdb
E:\data\Imdb2\random\lock mdb
E:\data\Imdb2\random\lock mdb
E:\data\Imdb2\random\lock mdb
E:\data\Imdb2\random\lock mdb
E:\data\Imdb2\random\lock mdb
E:\data\Imdb2\random‘data. mdb
E:\data\Imdb2\random‘data. mdb
E:\data\lmdb2\random‘\data.mdb

Result

SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

FILE LOCKED WI...

SUCCESS
SUCCESS

BUFFER OVERFL...
BUFFER OVERFL...

SUCCESS
SUCCESS
END OF FILE
SUCCESS

e ———

Detail
Information: Owner

Name: \Windows\System32\sechost dll
Name: \Windows\System32\sechost dll
Offset: 405,504, Length: 4,096, 1/0 Flags:
Offset: 405,504, Length: 16,384, 1/0 Flags
Name: \Users\Michael HRHINOS\source’
Offset: 32,768, Length: 4,096, 1/0 Flags: I
Desired Access: Generic Read/Write, Disg
Exclusive: True, Offset: 0, Length: 1, Fail h
AllocationSize: 0, EndOfFile: 0, NumberOfl
EndOfFile: 8,192

AllocationSize: 8,192

SyncType: SyncTypeCreate Section, Page
AllocationSize: 8,192, EndOfFile: 8,192, Ni
SyncType: SyncTypeCOther
VolumeCreationTime: 9/17/2018 7:25:21 |
CreationTime: 8/8/2019 12:11:02 PM, Las
Offset: 0, Length: 8,192, /0 Flags: Non-:
Desired Access: Generic Read/Write, Disg
Offset: 0, Length: 152, Priority: Nomal
Offset 0. Length: 8,192, Priority: Nommal

e Al Ams A

Why?

Storage algorithms (page-oriented storage engines)

* B-tree, B+ Tree
e Optimized for reads
e Optimized for sequential data

L/

B+ tree keys

Sequential keys Non-sequential keys

[
r——
Poge &
Bownih @ 5
Tatvres &
Aot Space 33 «
X)/ 1o page 0) Page o4
* o page |
.
LA 80 page 4 L
Lest
1580 page & Faer ¢
208 page § (A Space 25
o e 10
rre— —
10+ 50) Data =
(B bepemeit 2| et
-"\
W e 1 - 5w) Duta
1% See) Dt
Pomch 29 - Sce) Dot
Eatves *
L)
A Spaie 6 /
Ty
%) o page 12)4
M T H— 5
e 1 Toue
ST
Pupe 19
Lot
L
(A Space 35

Fatves
04 Nae 3 Doty

The cost of hops in the tree

Disk seek

\ S

Sequential reads mmm) | 1|2 3|4 5|6 |7
q [] [®) ° I ° l ° I
R
4 % d3 4 d5 dg d7
- SSD random read: 16,000ns = (1] Disk seek: 3,000,000ns ~ 3ms
16ps

I Read 1,000,000 bytes sequentially
from memory: 4,000ns = 4us

https://people.eecs.berkeley.edu/~rcs/research/interactive latency.html

Read 1,000,000 bytes sequentially
from disk: 947,000ns = 947us

Minimize performance impact of keys

* Sequential keys allow better performance
* 1,2,3,4,5
e Users/1, Users/2, Users/3

e B-Trees are used to store data AND indexes
* Query performance!

1-c) Storage

Data structure performance

The tale of an occasionally slow database

 Sometimes, Cassandra database was fast and sometimes not

* This happened non-deterministically

Search

Search other guides Q Search tips

Linux related problems / Reads are getting slower while writes are still fast

p g Reads are getting slower while writes are still fast
C a S S a n d ra The DataStax Enterprise Help Center also provides troubleshooting information.
problem

Too many SSTables can cause slow reads. Take the following steps to determine and correct slow reads:
[]
d O C u I I l e n t a t I O n I writes are Determine the total number of SSTables for each table.
' Check this number with nodetool tablestats.

period of Get the number of SSTables consulted for each read.
Check this number with nodetool tablehistograms. A median value over 2 or 3 is likely causing problems.

https://docs.datastax.com/en/dse-trblshoot/doc/troubleshooting/slowReads.html

Storage algorithms (log-structured storage engines)
SSTable SSTable SSTable

Users/3

i

In-memory‘ Storage
Usually a B-Tree or Skip List

Users/3

}

Storage algorithms (log-structured storage engines)

Users/44 Users/3

Users/3

Users/22
\)|
[i

In-memory Storage

}

Insert users/44

Storage algorithms (log-structured storage engines)

Users/44 Users/1
Users/3
update Users/22
o B Users/22 |

In-memory Storage

Update users/3

Storage algorithms (log-structured storage engines)

Users/44

Users/3 (update)

Users/3

Users/22
i

In-memory Storage

Users/3

Users/5 (delete)

|

)\ }

Delete users/5

Storage algorithms (log-structured storage engines)

e Users

Users/22
[i

In-memory Storage

Users/3

Users/5 (delete)

\)\

}

Flush!

Storage algorithms (log-structured storage engines)

Users/44

Users/5
Users/3 Bl Users/3

Users/3 (update)

Users/5 (delete)

In-memory Storage

Users/22
\ J |

| |

J

(appended at the end)

Storage algorithms (log-structured storage engines)

Users/44

Users/5
Users/3 Bl Users/3

Users/3 (update)

Users/5 (delete)

In-memory Storage

Users/22
\ J |

| |

J

Reading requires searching ALL SSTables!

Storage algorithms — LSM Tree compaction

This is roughly O(n*log(n)) operation!

K. -

CEEE
TX2 T

Storage algorithms — LSM Tree compaction

Users/1

Users/3
Users/22
Users/44

\ J |

| [
In-memory Storage

After compaction

ALTER TABLE users
WITH compaction =
{'class' : 'SizeTieredCompactionStrategy', 'min_threshold' : 6 }

Different databases have specific options to
optimize performance

For example

* MS-SQL index optimization

* RavenDB custom indexes

* MongoDB Aggregation Pipelines

1-d) Storage

Transaction implementation & performance

ACID guarantees!

All operations either succeed or not

e Atomicity

Data is consistent BEFORE and AFTER transaction

e Consistency

Multiple transactions do not interfere each other

e |solation

Even if system failure happens, transaction is recorded

e Durability

ACID guarantees!

* Note: not all DBs support it
e All of RDBMS
* Some NoSQLs — RavenDB, LevelDB, LMDB

Write-ahead log (WAL) - Atomicity, Durability

Writing

\d
WO s) v) conme e Y core g

Flush

S A

Data Storage w M5 6 | 7
o | o o | o oo [o|
by

dy d, dg d, dg dg d

Write-ahead log (WAL)

e "Write-Through" writes — no caching (otherwise no durability!)
* Lots of small writes (overhead of each write)

Write-Through
! Volatile . 1
Regular Write Buffer Periodic Flush I (I

Relevant storage benchmarks

ATTO Disk Benchmark

B T B B B R e B e e A R I e e e]

Benchmarking modes

B Untitled - ATTO Disk E - 2 —
File Help
Drive: (C:) Local Disk v Direct 1/0
10 Size: 512B v to B4 MB v [] Bypass Write Cache
File Size: 256 MB v []Werify Data
Queue Depth: 4 v
<< Description >> Start
Test Results i
Write — Read we— Wirite Read

512B

23.42 MB/s

Buffered vs. Write-through
NVMe SSD (Samsung 860 EVO m.2)

With buffers and caching (GBs/sec) No caching, Write-Through (MBs/sec)

512B

59128

1KE 1KB
2KB 2KB

4 KB 4 KB

8 KB 8KB
16 KB 16 KB
32 KB 32KB
654 KB 64 KB
128 KB 28 KB
256 KB '56 KB
512 KB 12 KB
1 MB 1 MB
2 ME 2MB
4 MB 4 MB

6

8 10 12 14 16 18 20

0 01 02 03 04 05 06 07 08 09 1

Storage effect on transactions

* Slow storage throughput = bottleneck on transactions
* Write-through performance = transaction throughput

2-3a) Indexing & Queries

Query complexity

Are those queries different?

)

Microsoft
SQL Server
SELECT * FROM Orders

WHERE ShipToCity IN ("Paris", "Lyon") AND

OrderedAt >= '2010-05-01"

RaVENDE

Safe by Default, Optimized for Efficiency

from Orders

where ShipTo.City in ("Paris",

OrderedAt >=

'2010-05-01"

. mongo
db.Orders.find ({
"ShipTo.City": {
"Sin": ["Parisﬂl "I..&'Ol"i"]

:I
"OrderedAt"™: {
"Sgte™: "2010-05-1"

"Lyon") and

Let’s start from something... simple.

"Company": "companies/73-A",
"Employee": "employees/7-A",
"Freight": 18.44,

"Lines": [

{

"Discount": 0.05,
"PricePerUnit": 17.45,
"Product": "products/1l6-A",
"ProductName": "Pavlova",

"Quantity": 14

1,
"OrderedAt": "1998-05-06T00:00:00.0000000",

" fTeAC @ 1998 T00:00:00.0000000",
"ShipTo": {
"City": "Kobenhavn",

"Country": "Denmark",
Linel": "Vi 34",
"Line2": null,
"Location": null,
"PostalCode": "1734",
"Region": null

b

First, we define an index

We create an mdex ’Eiﬁaf

. mongo

ders. tInde es

cov rs city and country fields of ShipTo

"v" o ,
"key" : {
"oid" o
},
"name™ : " id "
"ns" : "Northwind.orders"
},
{
"v" o 2,
"key" : {
"ShipTo.City" : 1,
" Shiplo-comatey
},
"name" : "ShipToIndex",
"ns"™_"Northwind.orders"
}

Then we do some queries

Fetching orders that were shipped to Paris or Lyon

db.orders.find ({
"ShipTo.City": {
usinn: ["Paris", nLyonn]
;
1) ;

. mongo

So far so good...

. mongo

B

Result

=

Fetch document

il

Index scan

v

Collection
Northwind.orders

‘\

/

—

y A
Index

.wind.orders.ShipToIndex

And another query

Fetching orders that were shipped to all of France

db.orders.find({

"ShipTo.Country": "France"

1) ;

. mongo

't’s a gotchal

Wates

‘ ph——
& ‘
Result Filter Collection scan
——

>

Collection
Northwind.orders

. mongo

Index Scan vs. Collection Scan

Collection Scan Index Scan
* O(n) scan * O(log(n)) seek

Why?

In some databases (like MongoDB)
* Indexed fields are concatenated into single index key

* Filtering only by prefix
The values are concatenated!

¥

Fieldl | Field2 index Key Record IDs
LyonFrance [71,[1],[4]

Lyon France
Paris France ParisFrance [5],[6]

Oslo Norway OsloNorway [12],[2],[9],[34]

Why?

In some databases (RavenDB, any Lucene-based index)
* Indexed terms stored separate
* Filtering by one or both fields in any order (union/intersect as needed)

Field1 | Feld2 index Key —
Lyon France Lyon [7],[1],[4]
Y . ShipTo.City Index
Paris France Paris [5],[6]
Oslo Norway Oslo [12],[2],[9],[34]
‘ Index Key Record IDs
France 71,041,141 [5,6) | >MPTo-country

Index
Norway [12],[2],[9],[34]

Collection/table scans are easily overlooked

Collection scan - development Collection scan - production
* Small amount of data e Large amount of data
* Extremely small query latency HUGE latency (quite often!)

Latency: 50ms vs 50 hours

2-b) Indexing & Queries

More about indexing

Indexing

* Indexes are stored as trees (usually B-trees)
* Updates have non-trivial complexity!

https://commons.wikimedia.org/wiki/File:Trie_example.svg

Indexing

from Orders
where ShipTo.City in ("Paris", "Lyon") and
OrderedAt >= '2010-05-01"

¥

Search time complexity (WHERE clause):
O(log(N)) + O(log(M)) + O(Max(K,P))
Where:

e Nand M are amount of rows in indexes
 Kand P are result sets of index searches

And it we use RDBMS, things become even
more interesting...

Join Algorithm Complexity

Merge Join O(n*log(n) + m*log(m))

Hash Join O(n + m)

Index Join O(m*log(n))

And if we have a non-trivial query...

SELECT

e.employee id AS "Employee #"

, e.first name || '

, e.email AS "Email"

"

e.last name AS "Name"

;, e.phone number AS "Phone"
e, 'MM/DD/YYYY') AS "Hire Date"

, TO_CHAR(e.hire_dat
, TO_CHAR(e.salary,

, e.commission pct AS

, 'works as ' || Jj.J
|| dm.first name |
;, TO_CHAR(j.min_sala

TO_CHAR(]j.max_salary,

; l.street address |
|| c.country name

, jJh.job id AS "History Job

, 'worked from ' ||
"'as ' || jj.job_ t

FROM employees e JOIN
LEFT
LEFT
LEFT
LEFT
LEFT
LEFT
LEFT
LEFT
LEFT

A

'L99G999D99 "', 'NLS NUMERIC CHARACTERS =

O

|
r
I

"Comission

cn
°

',99G999D99" , 'Nfs

RIC CHARAC
1. postal code ! ! l.ci
("l | - "Loc

.lggéjiigi

TO_CHAR (Y
itle || name
jobs j ON e.job _id = j.job id

JOIN

JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN

ORDER BY e.employee id;

'".,'" NLS CURRENCY =

ll$lll) As ”Salary"

tm !
‘thereisalsoa -
C .

TERS = ".," NLS CURRENCY = ":"') AS "(urrmnt Salary"
ty Il ', l.state province v,
a

employees m ON e.manager id = m.employee id

departments d ON d.department id =
employees dm ON d.manager_ id dm.
locations 1 ON d.location_ id 1.1

e.department id
employee id
ocation id

countries c ON l.country id = c.country id

regions r ON c.region id = r.regio
job_history jh ON e.employee id =
jobs jj ON jj.job id = jh.job id

departments dd ON dd.department id =

n id
jh.employee id

jh.department id

clause, 50,

Those are 10 JOIN statements!

https://dev.to/tyzia/example-of-complex-sql-query-to-get-as-much-data-as-possible-from-database-9he

..we have complexity between
O(log(n)) and O(too much)!

What can (should!) we do?

* RDBMS

* Proper indexing (kinda obvious, but still ©)
* Optimize (remove unnecessary JOINs — depends on business logic)

* Reduce query complexity
* Replace ‘row by row’ cursors with set based queries
* Reduce the amount of work queries do (for example, unnecessary sub-queries)
 Remove ORDER BY where it makes sense (huge overhead)
e Other optimizations are possible

* NoSQL
* Proper modeling
* Well planned indexing

2-c) Indexing & Queries

Indexes (sometimes) have complexity too!

Indexing complexity

db.runCommand({
mapReduce: "blogs",
map: function(){
for (let index

@; index < this.authors.length; ++index) {

let author = this.authors[index];
emit(author.firstName + " " + author.lastName, 1);
}
¥
reduce: function(, counters){
count = ©;
for (let index = ©; index < counters.length; ++index) {
count += counters[index];
}
return count;
¥

out: { inline: 1 }

})

Indexing complexity

Maps

1 from order in docs.Orders
Syntax @
2 select new
3
4 order.Company,
5 Count = 1,
6 Total = order.Lines.Sum(l => (1.Quantity * 1.PricePerUnit) * (1 - 1.Discount))
7}
Reduce
Syntax @ 1 from result in results
2 group result by result.Company
3 into g
4 select new
s Hi
6 Company = g.Key,
7 Count = g.Sum(x => x.Count),
8 Total = g.Sum(x => x.Total)

Indexing complexity

* As you can see, indexing has its own complexity
* More often than not it can be optimized

3-a) Network

Distributed system fallacy: Bandwidth is infinite

Here is a riddle: why a query with 100 results
takes several seconds to complete?

Hint: the request spends < 10ms on the server

The investigation

1. Look at query latency on the server

Results

YV Index'Auto/Orders/ByEmployee’ v was used togetth B Deletedocuments [3 ExportCSV M Statistics [H Display v £3 Expand results

i

Use logarithmic scale
B Total
Optimizer
Query
B Lucene
| Retriever
Storage

B Staleness

The investigation

2. Look at Fiddler timings RESpOnSE Size

@) statistics | Inspectors % AutoR "4 Composer [g%) Fiddler OrchestraBeta L33 |

Request Count: 1

Bytes Sent: -
Bytes Received: 3,287,227

ACTUAL PERFORMANCE
ClientConnected: 13:42:01.036
ClientBeginRequest: 13:42:38.211
GotRequestHeaders: 13:42:38.211
ClientDoneRequest: 13:42:38.211
Determine Gateway: Ooms

DNS Lookup: Ooms

TCP/IP Connect: 199ms

HTTPS Handshake: oms

Serverconnected: 13:42:38.411 a e n cy
FiddlerBeginRequest: 13:42:38.411

ServerGotRequest: 13:42:38.411
ServerBeginResponse: 13:42:38.644
GotResponseHeaders: 13:42:38.644
ServerDoneResponse: 13:42:41.273
ClientBeginResponse: 13:42:41.273
ClientDoneResponse: 13:42:41.273

: Overall Elapsed: @O:OB.OD

48; body:0)
(headers:267; body:3,286,960)

Network bandwith is not infinite!

3mb M “
document

5mb 2mb
document document

Database Client API

Solution: server-side projections (NoSQL)

from index 'Orders/ByShipment/Location'’ '

where spatial.within(ShipmentlLocation,

spatial.wkt('Circle(2.349014 48.864716 d=1000.0000)"'))
load Company as c, Employee as e

select {

CompanyName: c.Name,

EmployeeName: e.FirstName + " " + e.lLastName
}

Server-side Projection

Solution: server-side projections (NoSQL)

MongoDB API

var findDocuments = function(db,) { '
var collection = db.collection(‘restaurants');
// Find some documents
collection.find({ 'cuisine' : 'Brazilian' }, { 'name’' : 1, ‘cuilsine' : 1 })
.toArray(function(s) {

console.log("Found the following records");
//do something with found records

})s

Server-side Projection

3-b) Network

Distributed system fallacy: Latency is zero

Also... database requests can be an
Interesting issue...

Support » Plugin: WooCommerce » Site being slowed by too many (5000+) database

queries

Site being slowed Ry too many (5000+)

database queries

dynit (@dynit) ¥ Resolved
3 months, 3 weeks ago

Hello,

One of our sites is really getting slowed with too many Woocommerce
database queries. | checked via Query Monitor and just browsing through
categories (on the default shop page with the post type archive for products)
fires 5000+ database queries per page load. The site has 66 categories, about
600 products, 2200 variations, and 6 custom attributes per product. Single
product pages are ‘only’ 150-300 queries each, no performance issue there.

Network overhead

TCP handshake

e Server
,,m___se.cﬂ
ack® 5
ldatgy %1

Rey, Zo-
1369876 requests in 30.09s, 178.98MB read
Requests/sec: 45524.71

Transfer/sec:

https://github.com/dajuric/simple-http

Latency

Route.Add("/hello",
(request, response, args) =>
response.AsText("world!"));

var cts = new CancellationTokenSource();
var _ = HttpServer.ListenAsync(8080,
cts.Token, Route.OnHttpRequestAsync);

Console.ReadKey();

cts.Cancel();

nichael@michael-pc: $ wrk -t16 -cl1000 -d30s http://127.0.0.1:8080/hello
Running 3@s test @ http://127.0.0.1:8888/hello
16 threads and 1880 connections

Stdev Max +/- Stdev
21.62ms J 93ms 61.91ms 93.59%
2 o7 <90.86 18.69k 93.98%

5.95MB

Network overhead

Round Trip Time (RTT)
* Physical distance (insignificant for LANS)

Client 3
* Network hops D
& /
// Time
Server 4 «
@ to t

Round-trip Time

What can we do?

» Refactor to reduce number of requests (kinda obvious, but still...)

* NHibernate — Future Queries

* Entity Framework - QueryFuture

* RavenDB — Lazy Queries

using(var session = store.OpenSession())

{

var lazyUser = session.Advanced.Lazily.lLoad<User>("users/michael");
var lazyPosts = session.Query<Posts>().Take(30).Lazily();

session.Advanced.Eagerly.ExecuteAllPendinglLazyOperations();

//do something with lazyUser and lazyPosts

May sound trivial, but...

Do take a look at database traffic while stress testing and if possible in
production too.

 Fiddler

* Wireshark

* Profilers

* Any other tool to inspect traffic

Tosum It up

e Databases are abstractions
e Abstractions are leaky and might be the cause of perf issues
e Such perf issues can be dealt with (if we know about the "leak"!)

Questions?

michael.yarichuk@hibernatingrhinos.com

@myarichuk
https://github.com/ravendb/ravendb

https://github.com/myarichuk/PerfDemo-Sequential-vs-Random-Key

This Photo by Unknown author is licensed under CC BY-SA.

mailto:michael.yarichuk@hibernatingrhinos.com
http://mmjgwrites.wordpress.com/
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/ravendb/ravendb
https://github.com/myarichuk/PerfDemo-Sequential-vs-Random-Key

