
Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Model-Driven Testing

A Property-Based Approach for End-to-End
Testing

Nisan Haramati
@nisanharamati

nisan@haramati.ca

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

tldl; Model-Driven Testing - The Why
➢ Testing a distributed systems framework
➢ Test space too big

 { input }
x { add/remove nodes }
x { crash/recover nodes }
x { application topologies }

➢ End-to-End properties
➢ Reproducibility

2

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

tldl; Model-Driven Testing - The What
➢ From End-to-End Testing

➢ Programmatic instrumentation
➢ System as a gray/black box

➢ From Property-Based Testing
➢ Fuzzing
➢ Focus on properties
➢ Broad specification

3

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

tldl; Model-Driven Testing - The What
➢ Adding

➢ Model: validation context for state transitions
➢ Is the new state reachable from the previous state?

➢ Progressive validation
➢ History-dependence

➢ Is the new state valid, given the previous state(s)?

4

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

tldl; Example - Cassandra Cluster Size
➢ Operations: add_nodes, remove_nodes
➢ Properties

➢ size(add([...]), cluster) ==
size(cluster) + size([...])

➢ size(remove([...]), cluster) ==
size(cluster) - size([...])

5

+

-

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

tldl; Example - Cassandra Cluster Size
➢ What can possibly go wrong?

➢ Cluster too big (can’t split data further)
➢ Cluster overloaded (can’t handle the

overhead)
➢ Degraded availability
➢ Network partition
➢ Full disk
➢ Noisy neighbour
➢ Bad configuration

6

+

-

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

tldl; Example - Cassandra Cluster Size
➢ What can possibly go wrong?
➢ Testing simple properties can reveal

deeply hidden pathologies

7

+

-

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

➢ Short answer: Yes. Sort of.
➢ Key Concept: Model as validation context

➢ Long answer: No. Sort of.
➢ Key Difference: Model isn’t restricted to test

generation and output validation.
➢ Important distinction in distributed systems tests

tldl; Is this Model Based Testing?

8

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Agenda
➢ Too long didn’t listen;
➢ Background
➢ The Challenge: Testing a Complex Distributed Framework
➢ Model-Driven Testing
➢ Examples
➢ Conclusions
➢ References

9

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

About me
➢ Distributed Systems at Wallaroo Labs
➢ Real-time Complex Event Processing
➢ Data Quality in Real-time and Distributed Systems
➢ Data Engineering and Infrastructure

➢ Online dating, bioinformatics, fintech

10

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Wallaroo
➢ Framework for distributed data processing apps

➢ Managed state
➢ Application as a computation graph
➢ Scale, concurrency, distribution, reliability

➢ Written in Ponylang
➢ Similar to Apache Flink

11

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Word Count in Wallaroo

12

Multiple
layers of
abstraction

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Word Count in Wallaroo

13

➢ Resource
➢ State
➢ Compute
➢ Application

as Code

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Word Count in Wallaroo

14

➢ Resource
➢ State
➢ Compute
➢ Application

as Code

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Word Count in Wallaroo

15

➢ Resource
➢ State
➢ Compute
➢ Application

as Code

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Word Count in Wallaroo

16

➢ Resource
➢ State
➢ Compute
➢ Topology as

Code

Source(Decode)
 .to(Split)
 .to(Lower)
 .to(Strip)
 .key_by(MyKeyFunction)
 .to(Count)
 .to_sink(Encode)

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

The Challenge:

17

Testing a Complex Distributed Framework

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Wallaroo Characteristics
➢ Distributed → Orchestration
➢ Real-time → External dependencies (sources, sinks)

 → History dependence
➢ Opaque state → Signal generation
➢ Framework → Not directly testable

 → Large space of possible applications

18

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

➢ Functional
➢ Output == Expectation(Input)

➢ Operational
➢ Actually works
➢ Scales → Can add/remove workers
➢ Reliable → Can recover from worker failure

We Might Want to Test...

19

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

➢ Qualitative → Core Guarantees
➢ Consistency (causal)
➢ Everything arrives

➢ Where it should
➢ In order
➢ Without loss or duplication

We Might Want to Test...

20

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Model-Driven Testing

21

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Property-based testing
Is this a unicorn?

● Has 1 horn
● Has 4 legs
● Has 1 tail
● Has 2 ears

22

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Property-based testing
1. A fuzzer
2. A library of tools for making

it easy to construct
property-based tests using
that fuzzer.

- Dr. MacIver, hypothesis.works

23

Fuzzer

f(x) => y

Generate

Collect
Property?

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

● Produce input data for the test
● Possibly dynamically

generated
● Possibly dependent on results

of previous runs
 - Dr. MacIver, hypothesis.works

Fuzzer

24

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Property-based testing

25

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Property-based testing

26

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Property-based testing

27

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

End-to-End Properties
➢ Functional Correctness
➢ Operational Acceptance

➢ Robustness, reliability
➢ Qualitative Correctness

➢ Consistency

28

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

➢ Wallaroo is not a pure function… or a class… or even
a single executable

➢ Need
➢ Orchestration
➢ Remote control and measurement

➢ A distributed systems problem
➢ Order of concurrent events, clock skew, asynchronous

The End-to-End Problem

29

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

The End-to-End Problem

30

➢ For every single test
➢ Start Wallaroo cluster, sinks,

sources
➢ Get it into a specific state
➢ Send input, induce an event,

or inject a fault
➢ Measure before, during, after

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Wallaroo - End-to-End Testing

31

Start a cluster
with Cluster(command=?,host=?,

 sources=?,workers=?,
 sinks=?,sink_mode=?,

 ...) as cluster:
 # Start source streams
 …
 # Execute test events
 …

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Model-Based Testing
➢ PBT+ E2E + Model
➢ Model informs

➢ Input generator
➢ Event generator
➢ Fault generator
➢ Online/offline validation

➢ Generators may try to cover state space

32

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Model-Based Testing
➢ Events are applied to

➢ a system under test
➢ a model of the system

properties as states (e.g. an FSM)
➢ After each application, the properties

of the SUT and the model are
compared

33

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Model-Driven Testing
➢ Events are applied to

➢ a distributed system under test
➢ a model of the system properties

as states (e.g. an FSM)
➢ After each application…

measurement may not be possible

34

?

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Model-Driven Testing
➢ Signal & Measurement
➢ Self-validating applications

➢ Can we validate guarantees
within the test application?

➢ The .apply(...) may include
validation logic

35

?

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Examples

36

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Signal & Measurement

37

➢ Properties
➢ Ordered
➢ No loss
➢ No duplication

➢ State is Opaque

➢ Operations
➢ Scaling

➢ add / remove nodes
➢ Reliability

➢ crash / recover nodes

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

State Consistency Signal
Count(word, total) ⇒
 total += 1
 return total

(op0, state0) → (op1, state1)

38

Op State
before

Output

0 0 1

1 1 2

2 2 3

3 3 4

… … …

n n n+1

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

State Consistency Signal
Count(word, history) ⇒
 new_count = history.last + 1
 history.push(new_count)
 return history

(Count1(“dog”), [0]) →
(Count2(“dog”), [0,1,]) → …
(Countn(“dog”), [0,1,…,n-1,n])

39

Op State
Before

Output

0 [0] [0,1]

1 [0,1] [0,1,2]

2 [0,1,2] [0,1,2,3]

3 [0,1,2,3] [0,1,2,3,4]

… … …

n […,n-1,n] […,n,n+1]

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

State Consistency Signal

40

Op State Output

...

50 [...,48,49] [...,49,50]

...

51 (good) [...,49,50] [...,50,51]

51 (bad) [...,41,42] [...,42,51]

(Count1(“dog”), [0]) →
(Count2(“dog”), [0,1]) → …
(Count50(“dog”), [...,48,49]) →

>>CRASH>>
<<RECOVER...
 ROLLBACK<<

(Count51(“dog”), ???)
[...,49,50] + [51]
[...,41,42] + [51]

✔
X

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Inconsistent State Detection

41

Op State Output

...

50 [...,48,49] [...,49,50]

...

51 (good) [...,49,50] [...,50,51]

51 (bad) [...,41,42] [...,42,51]

[...,49,50,51]
[...,41,42,51]

✔
X

At the output (offline validation):

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Inconsistent State Detection

42

Op State Next Next -
last

...

50 [...,48,49] 50 1

...

51
(good)

[...,49,50] 51 1

51
(bad)

[...,41,42] 51 9

On update (online validation):
➢ +1 logic is insufficient
➢ Need sequence info of input message

Observe(next, history) ⇒
 if next != history.last +1:
 crash(“Sequentiality error!”)
 history.push(next)
 return history

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

For a given set of operations
ops = [Grow(2), Shrink(1),Crash(2)
 Recover(2),Grow(1)]

Start a cluster
with Cluster(...) as cluster:
 # Start source streams
 ...
 # Execute test operations
 for event in ops:
 event.apply(cluster)

Wallaroo - Scaling and Recovery Tests

43

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Wallaroo - Scaling and Recovery Tests
Dense matrix test generator
for api, group in APIS.items():
 for app in group:
 for ops in SEQS:
 for src_type in SOURCE_TYPES:
 # Create & execute tests
 ...
 # 30 Recovery test sequences
 # 144 Scaling test sequences

44

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Wallaroo - Topology Tests
➢ Recall word count
➢ Application topologies

are user-defined
➢ Infinitely many
➢ Like testing a VM

or a compiler

45

Source(Decode)
 .to(Split)
 .to(Lower)
 .to(Strip)
 .key_by(MyKeyFunction)
 .to(Count)
 .to_sink(Encode)

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Wallaroo - Topology Tests
➢ Recall word count
➢ Application topologies

are user-defined
➢ How can we test this?
➢ Code generation

46

Source(Decode)
 .to(Split)
 .to(Lower)
 .to(Strip)
 .key_by(MyKeyFunction)
 .to(Count)
 .to_sink(Encode)

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Wallaroo - Topology Instrinsics
➢ Computations

47

Stateless

State +
routing

➢ Concurrency
➢ Flow Modifiers

One-to-many

Filter

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Wallaroo - Generative Topology Tests
➢ Intrinsics → basis
➢ Test cross product of

 { computations }
x { concurrency }
x { flow modifiers }
x { cluster size }

48

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Wallaroo - Generative Topology Tests
➢ Intrinsics → basis
➢ Test cross product of

 { computations }
x { concurrency }
x { flow modifiers }
x { topology depth }
x { cluster size }

49

➢ Tracer app
➢ Append step ID and

monotonic counter value
➢ Send message forward

➢ Validation
➢ Reconstruct topology from

trace output
➢ Compare against known

application topology

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Wallaroo - Generative Topology Tests
➢ Intrinsics → basis
➢ Test cross product of

 { computations }
x { concurrency }
x { flow modifiers }
x { topology depth }
x { cluster size }

50

Create topology sequences
for d in depths:
 for steps in product(groups, d):
 for size in cluster_sizes:
 # Create & execute tests
 …
 # Process output traces and
 # match against ‘steps’
 …
504 Topology tests

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Refinement and Minimization
➢ After we find a failing test case

➢ Alert and stop
➢ Try to minimize test input

➢ Easy* for 1-dimensional fuzzer
➢ Model dependent for

multi-dimensional fuzzer

* still difficult

51

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

➢ Property-Based Tests for End-to-End Properties
➢ Functional, Operational, and Qualitative properties
➢ Distributed systems testing
➢ When measurements are hard or impossible

➢ Another layer on top of unit, integration, system, and
end-to-end testing

In Summary - Model-Driven Testing

52

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

➢ Requires
➢ End-to-End instrumentation (provision, deploy, run,

control, collect, teardown)
➢ A model of the properties being tested
➢ A test generator

➢ Reduces work required to cover a large test space

In Summary - Model-Driven Testing

53

https://unsplash.com/@wirhabenzeit/portfolio

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

References
➢ Hillel Wayne on Types of tests:

https://www.hillelwayne.com/post/a-bunch-of-tests/
➢ Model Based Testing - https://en.wikipedia.org/wiki/Model-based_testing
➢ Hypothesis, Property-based testing for Python - https://hypothesis.works/
➢ Testing a Distributed System - https://queue.acm.org/detail.cfm?id=2800697
➢ Wallaroo - https://github.com/WallarooLabs/wallaroo

54

https://unsplash.com/@wirhabenzeit/portfolio
https://www.hillelwayne.com/post/a-bunch-of-tests/
https://en.wikipedia.org/wiki/Model-based_testing
https://hypothesis.works/
https://queue.acm.org/detail.cfm?id=2800697
https://github.com/WallarooLabs/wallaroo/tree/master/testing/correctness/tests

Photo credit: Dominik Schröder, pub.ist.ac.at/~dschroed

Nisan Haramati @nisanharamati

WallarooLabs: Model-Driven Testing

Thank you!

55

Nisan Haramati
@nisanharamati
haramati.ca
nisan@haramati.ca

https://unsplash.com/@wirhabenzeit/portfolio

