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Where do I come from?

● Currently TL of Google Cloud Tools for Eclipse (70% test 
coverage)

● Developer of XOM (~99% test coverage, almost all test 
first)

● Jaxen maintainer, Apache Maven committer
● Author of a few books and co-author of https://jlbp.dev
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Why do we write unit tests?

● Because we want our code to work

● Because we want it to keep working

● Because we want to develop faster with more confidence 
and fewer regressions

● Because we make mistakes
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The Fundamental Principle of Unit Testing
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Verify that a known, fixed input produces a known, 
fixed output.
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Start in the Middle of the Road
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What if you don’t know the correct output?

● If it’s a deterministic answer, write a characterization test.

● If the problem is fuzzy or not perfectly defined, test a similar 
problem with less fuzzy answers. 
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Eliminate everything that makes input or output 
unclear or contingent.
● No random input. Always fixed values.

● Don’t use named constants from the model 
code. They may be wrong or change. Prefer 
literal strings and numbers.

● Don’t access the network and preferably not the 
file system.

● Control time, the speed of light, or the 
gravitational constant of the universe.
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#2 Write Your Tests First!

● It’s not just about testing; it’s about software development.

● Test first development creates better API because you start with 
the user, not the used. 

● Test first hides implementation and avoids exposing internal 
implementation details. It avoids brittle, tightly coupled tests.
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Test First also makes better tests

public class ListTest {
  private List<String> list = new ArrayList<>();

  public void testAdd() {
    list.add("Foo");
    Assert.assertEquals(1, list.size());
  }

}
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#3 Unit Tests

● Unit means One. Each test tests exactly one thing.

● Each test method is one test 

● Best practice: one assert per test method

● Share setup in a fixture, not the same method

● You can have multiple test classes per model class. Do not feel compelled 
to stuff all your tests for Foo into FooTest.
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Unit also means Independent

● Tests can (and do) run in any order. 

● Tests can (and do) run in parallel in multiple threads. 

● Tests should not interfere with each other. 
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Avoid Conditional Logic in Tests

  if (x > 5) {
    assertTrue(y);
  }
  else {
   assertEquals(1, z);
  }
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Tests and Thread Safety

● Don’t use synchronization, semaphores, or special data structures.

● Do not share data between tests:

○ Do not use non-constant static fields in your tests.  

○ Be wary of global state in the model code under test.

● Best practice: one assert per test method.

● Share setup in a fixture, not the same method
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The Two Least Known Facts of Unit Testing

.
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1. Tests do not share instance data.
public class ListTest {
  private List<String> list = new ArrayList<>();

  @Test
  public void testAdd() {
    list.add("Foo");
    Assert.assertEquals(1, list.size());
  }

  @Test
  public void testAdd2Elements() {
    list.add("Baz");
    list.add("Bar");
    Assert.assertEquals(2, list.size());
  }

}
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2. You can have many test classes per model class.

● Do not feel compelled to stuff all your tests for Foo into FooTest.

● Every test that needs a slightly different setup can go into a separate test 
class. 
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Speed

● A single test should run in a second or less.

● A complete suite should run in a minute or less. (cloud-opensource-java) 

● Separate larger tests into additional suites; separate unit and integration 
tests; e.g. Apache Maven

● This is for ease of development.

● Fail fast. Run slowest tests last.

○ Example

https://github.com/GoogleCloudPlatform/google-cloud-eclipse/pull/1645
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Not All Tests Need to be Unit Tests
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The Power of Integration Tests

● Integration tests cover many LOC with very little effort
● The tradeoff is they are harder to debug when something goes wrong
● Integration tests can catch errors in the interfaces between classes that unit 

tests miss.
● They can even catch changes in the external environment. 

● You need both
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Passing tests should produce no output

● There should never be any question as to whether a test passed. Green or Red, 
Pass or Fail. 

● If necessary, silence loggers in tests.  

● Maven gets this badly wrong.

○ Example

https://builds.apache.org/job/maven-box/job/maven-shared-utils/job/master/
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Failing tests should produce clear output

● Failing tests should give clear, unambiguous error messages.  

● Rotate your test data.

○ Don’t use the same data in every test.

○ E.g. don’t set all ints you test to 3. Use 3, 33, 1117, -98, etc.

○ This makes it much easier to see immediately which test is failing and 
why.

● Truth helps with collections
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Flakiness
● Work really, really hard to avoid

● Sources of flakiness:

○ Time dependence

○ Network availability

○ Explicit Randomness

○ Multithreading

○ Unexpectedly flaky model code

○ Test interdependence and order

○ Bad test infrastructure; e.g. CI servers
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System Skew
● Sources of flakiness:

○ Multithreading

○ Assumptions about the underlying operating system

○ Undefined behavior

■ Floating point roundoff

■ Integer width

■ Default character set

■ etc.
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Debugging

● Write a failing test before you fix the bug.  

● If the test passes, the bug isn’t what you think it is.
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Refactoring

● Break the code before you refactor it.

○ Do the tests fail?

○ Example  

● Check your code coverage

● If necessary, write additional tests before doing unsafe refactorings.

https://github.com/GoogleCloudPlatform/google-cloud-eclipse/issues/1573#issuecomment-288495557
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Development Practices

● Use continuous integration (e.g. Travis, CircleCI, etc.). 

● Use a submit queue 

● Never, ever check in with a failing test.

● If it does happen, rollback first; ask questions later.

● A red test blocks all merges. No further check ins until the build is green.
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Final Thoughts

● Write your tests first.

● Make all tests unambiguous and reproducible. 
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Questions?
Comments?
Thoughts?
War Stories?

 



Thank You
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Elliotte Rusty Harold

When not laboring in his secret identity of a mild-mannered software 
developer, Elliotte Rusty Harold lives in a secret mountaintop laboratory on 
a large island off the East Coast of the United States with his wife Beth 
and dog Thor. He’s an avid birder and insect photographer. His fiction has 
appeared in Alfred Hitchcock’s Mystery Magazine, Crossed Genres, Daily 
Science Fiction, and numerous anthologies. He’s also written over twenty 
non-fiction books for various publishers including Addison-Wesley, 
O'Reilly, Wiley, and Prentice Hall. His most recent books are Java Network 
Programming, 4th edition, and JavaMail API, both from O’Reilly. Find him 
as @elharo on Twitter or at http://www.elharo.com/blog/
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