
Elliotte Rusty Harold
TL - Google Cloud Tools for Eclipse

Effective Unit Testing

Google Cloud Platform 2

Where do I come from?

● Currently TL of Google Cloud Tools for Eclipse (70% test
coverage)

● Developer of XOM (~99% test coverage, almost all test
first)

● Jaxen maintainer, Apache Maven committer
● Author of a few books and co-author of https://jlbp.dev

Google Cloud Platform 3

Why do we write unit tests?

● Because we want our code to work

● Because we want it to keep working

● Because we want to develop faster with more confidence
and fewer regressions

● Because we make mistakes

Google Cloud Platform 4

The Fundamental Principle of Unit Testing

Confidential & ProprietaryGoogle Cloud Platform 5

Verify that a known, fixed input produces a known,
fixed output.

Google Cloud Platform 6

Start in the Middle of the Road

Google Cloud Platform 7

What if you don’t know the correct output?

● If it’s a deterministic answer, write a characterization test.

● If the problem is fuzzy or not perfectly defined, test a similar
problem with less fuzzy answers.

Google Cloud Platform 8

Eliminate everything that makes input or output
unclear or contingent.
● No random input. Always fixed values.

● Don’t use named constants from the model
code. They may be wrong or change. Prefer
literal strings and numbers.

● Don’t access the network and preferably not the
file system.

● Control time, the speed of light, or the
gravitational constant of the universe.

Google Cloud Platform 9

#2 Write Your Tests First!

● It’s not just about testing; it’s about software development.

● Test first development creates better API because you start with
the user, not the used.

● Test first hides implementation and avoids exposing internal
implementation details. It avoids brittle, tightly coupled tests.

Google Cloud Platform 10

Test First also makes better tests

public class ListTest {
 private List<String> list = new ArrayList<>();

 public void testAdd() {
 list.add("Foo");
 Assert.assertEquals(1, list.size());
 }

}

Google Cloud Platform 11

#3 Unit Tests

● Unit means One. Each test tests exactly one thing.

● Each test method is one test

● Best practice: one assert per test method

● Share setup in a fixture, not the same method

● You can have multiple test classes per model class. Do not feel compelled
to stuff all your tests for Foo into FooTest.

Google Cloud Platform 12

Unit also means Independent

● Tests can (and do) run in any order.

● Tests can (and do) run in parallel in multiple threads.

● Tests should not interfere with each other.

Google Cloud Platform 13

Avoid Conditional Logic in Tests

 if (x > 5) {
 assertTrue(y);
 }
 else {
 assertEquals(1, z);
 }

Google Cloud Platform 14

Tests and Thread Safety

● Don’t use synchronization, semaphores, or special data structures.

● Do not share data between tests:

○ Do not use non-constant static fields in your tests.

○ Be wary of global state in the model code under test.

● Best practice: one assert per test method.

● Share setup in a fixture, not the same method

Google Cloud Platform 15

The Two Least Known Facts of Unit Testing

.

Google Cloud Platform 16

1. Tests do not share instance data.
public class ListTest {
 private List<String> list = new ArrayList<>();

 @Test
 public void testAdd() {
 list.add("Foo");
 Assert.assertEquals(1, list.size());
 }

 @Test
 public void testAdd2Elements() {
 list.add("Baz");
 list.add("Bar");
 Assert.assertEquals(2, list.size());
 }

}

Google Cloud Platform 17

2. You can have many test classes per model class.

● Do not feel compelled to stuff all your tests for Foo into FooTest.

● Every test that needs a slightly different setup can go into a separate test
class.

Google Cloud Platform 18

Speed

● A single test should run in a second or less.

● A complete suite should run in a minute or less. (cloud-opensource-java)

● Separate larger tests into additional suites; separate unit and integration
tests; e.g. Apache Maven

● This is for ease of development.

● Fail fast. Run slowest tests last.

○ Example

https://github.com/GoogleCloudPlatform/google-cloud-eclipse/pull/1645

Confidential & ProprietaryGoogle Cloud Platform 19

Not All Tests Need to be Unit Tests

Google Cloud Platform 20

The Power of Integration Tests

● Integration tests cover many LOC with very little effort
● The tradeoff is they are harder to debug when something goes wrong
● Integration tests can catch errors in the interfaces between classes that unit

tests miss.
● They can even catch changes in the external environment.

● You need both

Google Cloud Platform 21

Passing tests should produce no output

● There should never be any question as to whether a test passed. Green or Red,
Pass or Fail.

● If necessary, silence loggers in tests.

● Maven gets this badly wrong.

○ Example

https://builds.apache.org/job/maven-box/job/maven-shared-utils/job/master/

Google Cloud Platform 22

Failing tests should produce clear output

● Failing tests should give clear, unambiguous error messages.

● Rotate your test data.

○ Don’t use the same data in every test.

○ E.g. don’t set all ints you test to 3. Use 3, 33, 1117, -98, etc.

○ This makes it much easier to see immediately which test is failing and
why.

● Truth helps with collections

Google Cloud Platform 23

Flakiness
● Work really, really hard to avoid

● Sources of flakiness:

○ Time dependence

○ Network availability

○ Explicit Randomness

○ Multithreading

○ Unexpectedly flaky model code

○ Test interdependence and order

○ Bad test infrastructure; e.g. CI servers

Google Cloud Platform 24

System Skew
● Sources of flakiness:

○ Multithreading

○ Assumptions about the underlying operating system

○ Undefined behavior

■ Floating point roundoff

■ Integer width

■ Default character set

■ etc.

Google Cloud Platform 25

Debugging

● Write a failing test before you fix the bug.

● If the test passes, the bug isn’t what you think it is.

Google Cloud Platform 26

Refactoring

● Break the code before you refactor it.

○ Do the tests fail?

○ Example

● Check your code coverage

● If necessary, write additional tests before doing unsafe refactorings.

https://github.com/GoogleCloudPlatform/google-cloud-eclipse/issues/1573#issuecomment-288495557

Google Cloud Platform 27

Development Practices

● Use continuous integration (e.g. Travis, CircleCI, etc.).

● Use a submit queue

● Never, ever check in with a failing test.

● If it does happen, rollback first; ask questions later.

● A red test blocks all merges. No further check ins until the build is green.

Google Cloud Platform 28

Final Thoughts

● Write your tests first.

● Make all tests unambiguous and reproducible.

Google Cloud Platform 29

Questions?
Comments?
Thoughts?
War Stories?

Thank You

Google Cloud Platform 31

Elliotte Rusty Harold

When not laboring in his secret identity of a mild-mannered software
developer, Elliotte Rusty Harold lives in a secret mountaintop laboratory on
a large island off the East Coast of the United States with his wife Beth
and dog Thor. He’s an avid birder and insect photographer. His fiction has
appeared in Alfred Hitchcock’s Mystery Magazine, Crossed Genres, Daily
Science Fiction, and numerous anthologies. He’s also written over twenty
non-fiction books for various publishers including Addison-Wesley,
O'Reilly, Wiley, and Prentice Hall. His most recent books are Java Network
Programming, 4th edition, and JavaMail API, both from O’Reilly. Find him
as @elharo on Twitter or at http://www.elharo.com/blog/

SWE
NYC

