
UI: FROM IMPERATIVE TO FUNCTIONAL
ALFONSO GARCÍA-CARO

WHO AM I?

▸ Alfonso García-Caro, from and living in Madrid

▸ Degree in Linguistics, self-taught programmer

▸ Most experience in desktop and web applications

▸ Experience in multiple sectors: Videogames, Education, Green Energy, Commerce,
Genetics

▸ Creator of Fable, F# to JS compiler

▸ Coauthor of Mastering F#, Packt Publishing

https://demetrixbio.com/

WHAT DOES A UI: LOW LEVEL

▸ Retrieve data from a source

▸ Render pixels on screen

▸ Interpret signals from computer peripherals

▸ Update data

▸ Goto 2

WHAT DOES A UI: HIGH LEVEL

▸ Retrieve data from a source

▸ Display familiar controls (button, text input…) on screen

▸ React to events from controls

▸ Update data

▸ Goto 2

WINFORMS
AN IMPERATIVE
APPROACH

BUILDING A UI: AN IMPERATIVE APPROACH

▸ Model the controls as objects

▸ UI is built by instantiating and editing properties of those objects

▸ A designer can help significantly

▸ Most logic goes into the event hooks

▸ Hooks can modify both data and UI controls

ADVANTAGES

▸ Rapid prototyping thanks to designer

▸ Hierarchy of controls and layouts fits well in OOP paradigm

▸ MVC: Separation of concerns, move logic to controller

PROBLEMS

▸ Code generated by designer cannot be touched

▸ UI is not very dynamic

▸ Difficult to create custom components

IN THE WEB

▸ DOM: Document Object Model

▸ jQuery makes it more tractable, still imperative

▸ Very basic native controls, no styling

▸ Some designers available

WPF
SEPARATE THE VIEW
FROM THE LOGIC

BUILDING A UI: SEPARATING VIEW FROM LOGIC

▸ WPF: MVVM & XAML

▸ Cannot fit more acronyms in a shorter space

▸ XAML: Declarative language for the UI

▸ MVVM: Link the UI and model through “magic” bindings

▸ Lot of logic still happening in the events

ADVANTAGES

▸ Can use both (software) designer and edit UI code

▸ Designer and programmer can work separately

▸ Easier to write components

▸ Custom styling is easier too

IN THE WEB

▸ Golden age of data binding libraries: Backbone, Knockout, Ember

▸ Introduction of template system to make HTML dynamic

▸ Vue.js is very popular nowadays

PROBLEMS

▸ Need to learn another language

▸ Bindings can get complex (one-way, two-way, triggers)

▸ XAML is limited, some operations require many “tricks” from framework

MEANWHILE IN THE WEB...

FUNCTIONAL
PROGRAMMING

IT WILL FIX ALL THE THINGS!

REACT

▸ Virtual DOM

▸ Write UIs declaratively using same programming language

▸ Everything is a component

▸ Components can be functions, that are easily composed

▸ Encourages immutability and one-way data flow

ELM (ARCHITECTURE)

▸ Model-View-Update

▸ Model: Immutable data structure that defines the UI at a
specific point

▸ View: Pure function that transforms the model into UI
elements

▸ Update: Receives the current state of the model and a
message, and returns a new model

FABLE

▸ F# to JS compiler: fable.io/repl

▸ Fable.Elmish: implementation of Elm architecture for Fable

▸ Uses React as render engine

▸ Inspired other projects like Fabulous (Elmish for Xamarin)

▸ C# tends to follow Redux (variant of Elm architecture)

http://fable.io/repl

MESSAGES

▸ View function receives the state and a dispatch function

▸ Events dispatch messages when triggered

▸ Most logic is removed from the events

▸ Messages improve semantics over raw events

▸ Implementing library must include a queue to deal with messages
sequantially

COMMANDS (ASYNCHRONOUS ACTIONS)

▸ Update function is synchronous

▸ Updates must be fast to prevent locking the UI

▸ Asynchronous actions (like REST calls) can be run inside commands

▸ Commands are just callbacks that receive the dispatch function as argument

▸ When the callback is finished, it dispatches a message triggering another
update/render cycle

COMPONENTS

▸ Components as a pattern: code for Model-View-Update

▸ Usual file structure: Types/State/View

▸ Components organize themselves hierarchically through composition

▸ Messages bubble up, view and updates flow top-down

▸ Children can communicate with parent by external messages

▸ The app is just the root component

LET’S SEE IT IN ACTION

ADVANTAGES

▸ Removes a lot of cognitive overhead

▸ Single language for logic and view

▸ Immutability and message queue make it much easier to reason about model

▸ Enables hot reloading and time travel debugging

▸ Easy to maintain thanks to “repetitive” structure

PROBLEMS

▸ Sometimes doesn’t feel “smart enough”

▸ Almost impossible to have a (software) designer

▸ More difficult for designer and programmer to work separately

▸ Some boilerplate to wire components and add actions

▸ Needs some care to avoid unnecessary renders (memoize components)

СПАСИБО!

@alfonsogcnunez
@fablecompiler

https://guide.elm-lang.org/
https://elmish.github.io/

https://guide.elm-lang.org/
https://elmish.github.io/

fable.io/fableconf

http://fable.io/fableconf

