
Building Responsive &

Scalable Applications
Jeffrey Richter

Jeffrey Richter: Microsoft Azure Software
Architect, Author, & Wintellect Co-Founder

JeffreyR@Microsoft.com

www.linkedin.com/in/JeffRichter

@JeffRichter

Architecting Distributed Cloud Apps
6.5hr technology-agnostic course
http://aka.ms/RichterCloudApps

http://aka.ms/RichterCloudApps

Motivation

 Early OSes didn’t support threads (there was just 1 thread)
 Problem: Long-running tasks affected all apps and the OS

 Solution: Windows supports 1+ threads/process for robustness

 Threads have space & time overhead
 Kernel object (contains thread’s properties & register set context)

 Context size in bytes: x86 = ~700, x64 = ~1240, ARM = ~350

 User-mode data (Thread Environment Block)

 4KB, exception-handling chain, TLS, GDI/OpenGL stuff

 Stacks: user-mode (1MB committed) & kernel-mode (12KB/24KB)

 DLL thread attach/detach notifications

 1 CPU can only run 1 thread at a time
 After quantum, Windows context switches to another thread

Motivation

 Every context switch requires that Windows
 Save registers from CPU to running thread’s kernel object
 Determine which thread to schedule next

 If thread owned by other process, switch address space

 Load registers from selected thread’s kernel object into CPU

 After the switch, CPU suffers cache misses repopulating its cache

 All of this is pure overhead and hurts performance
 But required for a robust OS

 Conclusion
 Avoid threads: incur time & memory overhead

 Use threads: responsiveness & scalability (on multi-CPU system)

 This talk is about wrestling with this tension

(Windows I/O Dispatcher)

ReadFile(...);

NTFS Driver

IRP Queue

Synchronous I/O

Network DVD-ROM

IRP

Your thread blocks here!

Hardware does I/O;

No threads involved!

FileStream fs = new FileStream(...);
Int32 bytesRead = fs.Read(...);

ReadFile(...);

FileStream fs = new FileStream(…, FileOptions.Asynchronous);
Int32 bytesRead = await fs.ReadAsync(...);

(Windows I/O Dispatcher)

CLR Thread Pool

Threads can extract

completed IRPs

from here

Asynchronous I/O with XxxAsync

NTFS Driver

IRP Queue

IRP

Your thread does

NOT block here!

Thread returns to caller!

Tells device driver:

1. Don’t block thread req’ing I/O

2. Put completed IRP in TP

Async Functions are

State Machine Objects

Compiler Transformation (Pseudo Code)

// 'async' turns method into state machine, requires Task return type

// (identifying operation completing in future) & allows use of await

async Task<Int32> HttpLengthAsync(String uri) {

 String html = await new HttpClient().GetStringAsync(uri);

 return html.Length;

}

───
Task<Int32> HttpLengthAsync() { // uri m_uri

 try {

 switch (m_state) { // Defaults to 0

 case 0:

 m_taskHLA = new Task<Int32>(); // HttpLengthAsync’s task

 // XxxAsync queues IRP to device driver & returns Task<String>

 m_taskGSA = new HttpClient().GetStringAsync(m_uri);

 if (m_taskGSA.IsCompleted) goto case 1; // Perf optimization

 m_state = 1; m_taskGSA.ContinueWith(HttpLengthAsync); break; // From await

 case 1:

 String html = m_taskGSA.Result; // Throws if I/O failed

 m_taskHLA.SetResult(html.Length);

 break;

 }

 }

 catch (Exception e) { m_taskHLA.SetException(e); }

 return m_taskHLA;

} // Thread returns to caller or thread pool

Named Pipe Client

async Task<String> IssueClientRequestAsync(String serverName, String msg) {

 using (var pipe = new NamedPipeClientStream(serverName, "PipeName",

 PipeDirection.InOut, PipeOptions.Asynchronous)) {

 pipe.Connect(); // Must Connect before setting ReadMode

 pipe.ReadMode = PipeTransmissionMode.Message;

 // Asynchronously send data to the server

 Byte[] request = Encoding.UTF8.GetBytes(msg);

 await pipe.WriteAsync(request, 0, request.Length);

 // Asynchronously read the server's response

 Byte[] response = new Byte[1000];

 Int32 bytesRead = await pipe.ReadAsync(response, 0, response.Length);

 return Encoding.UTF8.GetString(response, 0, bytesRead);

 } // Close the pipe

}

Some Async Functions in the FCL

 Stream-derived types
 ReadAsync, WriteAsync, FlushAsync, CopyToAsync

 TextReader-derived types
 ReadAsync, ReadLineAsync, ReadToEndAsync, ReadBlockAsync

 TextWriter-derived types
 WriteAsync, WriteLineAsync, FlushAsync

 HttpClient
 GetAsync, PostAsync, PutAsync, DeleteAsync, …

 SqlCommand
 ExecuteDbDataReaderAsync, ExecuteNonQueryAsync, ExecuteReaderAsync, ExecuteScalarAsync, …

 Tools (like SvcUtil.exe) that produce web service proxy classes

Non-Scalable Servers

The Server

(Ex: ASP.NET, WCF)

T
h

re
a
d

 P
o
o
l

Context switching

Another Server

(Ex: SQL)

Scalable Servers

The Server

(Ex: ASP.NET, WCF)

T
h

re
a
d

 P
o
o
l

Another Server

(Ex: SQL)

Application Models &

their Threading Models

Applications & their Threading Models

 Applications impose their own threading model
 CUI/Services: no model; any thread can do anything

 GUI: window must be modified by thread that creates it

 ASP.NET (Forms/Services): impersonates client’s culture/identity

 http://msdn.microsoft.com/en-us/library/bz9tc508.aspx

 SynchronizationContext-derived objects connect an application model to its
threading model

 The await operator captures the calling thread’s SC and
calls through it when resuming the state machine
 For application code, this is usually good

 For class library code, this is usually bad

http://msdn.microsoft.com/en-us/library/bz9tc508.aspx
http://msdn.microsoft.com/en-us/library/bz9tc508.aspx
http://msdn.microsoft.com/en-us/library/bz9tc508.aspx

GUI App Deadlocks

private sealed class MyWpfWindow : Window {

 protected override void OnActivated(EventArgs e) {

 // Calling GetResult makes GUI thread block waiting for the result

 var uri = "http://Wintellect.com/";

 Int32 length = HttpLengthAsync(uri).GetAwaiter().GetResult();

 // Do something with ‘length’ ...
 base.OnActivated(e);

 }

 private async Task<Int32> HttpLengthAsync(String uri) {

 // Issue HTTP request & let thread return to caller

 String text = await new HttpClient().GetStringAsync(uri);

 // We never get here: GUI thread waits for this method to finish but it

 // can't because the GUI thread is waiting for it to finish DEADLOCK!

 return text.Length;

 }

}

App-Model Agnostic Code
should use ConfigureAwait(false)

private async Task<Int32> HttpLengthAsync(String uri) {

 // Issue HTTP request & let thread return to caller

 String text = await new HttpClient().GetStringAsync(uri)

 .ConfigureAwait(false); // Do NOT use calling SynchronizationContext

 // We DO get here now because a thread pool thread can execute

 // this code as opposed to forcing the GUI thread to execute it.

 // Of course, don’t try to update the UI here!

 return text.Length;

}

You must apply .ConfigureAwait(false) to every Task you await !
(because some tasks may complete synchronously)

Also, ignoring SynchronizationContext improves performance

Task.Run Forces use of
Thread Pool Threads

private /* async */ Task<Int32> HttpLengthAsync(String uri) {

 // Task.Run is called on the GUI thread & returns immediately

 return Task.Run(async () => {

 // The lambda body executes via a thread pool thread which

 // doesn’t have a SynchronizationContext associated with it
 String text = await new HttpClient().GetStringAsync(uri);

 // We DO get here because a thread pool thread can execute this code

 return text.Length;

 });

}

Note: .ConfigureAwait(false) not needed anywhere now !

Questions

