
Performance
Reactive

• Software Engineer focused on distributed systems development, adopting Reactive
Manifesto and Reactive Programming techniques

• Open source geek, active contributor of Project Reactor / RSocket
• Author of the book "Reactive Programming in Spring 5”
• Achieved 4-times better performance by tuning Reactor for RSocket Project

About Me

@OlehDokuka

Statements
About Reactive And Non-Blocking

Source: TechEmpower: Web Frameworks Benchmark - Round 18: Multiple queries

Statements 1

Reactive Non-Blocking is way
faster than imperative blocking

https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=query&l=zik0vz-f&p=zdk8ae-qmx0qn-zhxjwf-4atpfj&d=e3&f=zijunz-zik0zj-zik0zj-zik0zj-zik0zj-zik0zj-zik0zj-zik0zj-zik0zj-e7

Source: TechEmpower: Web Frameworks Benchmark - Round 18: Multiple queries

Statements 2

However: Async Non-Blocking is
faster than Reactive

https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=query&l=zik0vz-f&p=zik0zi-zik0zj-zik0zj-4fti4f&d=e3

Statements 2

Netty

Spring WebFlux

Application

PgClient

Netty

Ratpack

Application

PgClient

NettyReactor

Statements 3

Reactive-Streams are NOT that
fast

Statements 4

However: Reactive states for
simplicity
Operators offered by Reactive Libraries often reduce what was
once an elaborate challenge into a few lines of code

Source: ReactiveX.io

http://ReactiveX.io
http://reactivex.io/

Today’s Outline

Problematic How To Performance

Performance Measurement
A few words on

• We will NOT measure network
• We will measure Reactive Code performance using JMH
• We will look at things like Throughput / Latency

Performance Measurement

The Store Project
For Measurements

The Store Project: Execution Flow

Users Service

Orders Service

Cart Service

Payment Service

Products Service

• Check User Auth
• Resolve Current Cart
• Resolve Products Info
• Make a Payment

Code Session

Where the overhead
comes from

Reactive-Streams
Lifecycle

Phase 1: Assemble

var fR = new FluxRange(0, 100);
var fM = new FluxMap<>(fR, …);
var fF = new FluxFilter<>(fM, …);
var fT = new FluxTake<>(fF, 5);

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

We decorate Publisher into
Publisher into Publisher …

Phase 2: Subscription

.subscribe(subscriber)

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

final class FluxTake<T> ... {
 final Flux<? extends I> source;

 void subscribe(Subscriber actual) {
 source.subscribe(
 new TakeSubscriber<>(actual, n)
);
 }
}

final class FluxTake<T> ... {
 final Flux<? extends I> source;

 void subscribe(Subscriber actual) {
 source.subscribe(
 new TakeSubscriber<>(actual, n)
);
 }
}

final class FluxTake<T> ... {
 final Flux<? extends I> source;

 void subscribe(Subscriber actual) {
 source.subscribe(
 new TakeSubscriber<>(actual, n)
);
 }
}

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

.subscribe(subscriber)

final class FluxFilter<T> ... {
 final Flux<? extends I> source;

 void subscribe(Subscriber actual) {
 source.subscribe(
 new FilterSubscriber<>(actual,…)
);
 }
}

final class FluxFilter<T> ... {
 final Flux<? extends I> source;

 void subscribe(Subscriber actual) {
 source.subscribe(
 new FilterSubscriber<>(actual,…)
);
 }
}

TakeSubscriber

final class FluxFilter<T> ... {
 final Flux<? extends I> source;

 void subscribe(Subscriber actual) {
 source.subscribe(
 new FilterSubscriber<>(actual,…)
);
 }
}

Stacktrace

main:14,subscribe:56, FluxTake (reactor.core.publisher)
main:14,
subscribe:53, FluxFilter (reactor.core.publisher)
subscribe:56, FluxTake (reactor.core.publisher)
main:14,

subscribe:59, FluxMap (reactor.core.publisher)
subscribe:53, FluxFilter (reactor.core.publisher)
subscribe:56, FluxTake (reactor.core.publisher)
main:14,

subscribe:53, FluxRange (reactor.core.publisher)
subscribe:59, FluxMap (reactor.core.publisher)
subscribe:53, FluxFilter (reactor.core.publisher)
subscribe:56, FluxTake (reactor.core.publisher)
main:14,

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

final class FluxMap<T> ... {
 final Flux<? extends I> source;

 void subscribe(Subscriber actual) {
 source.subscribe(
 new MapSubscriber<>(actual, …)
);
 }
}

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

final class FluxRange<T> ... {

 void subscribe(Subscriber actual) {
 actaul.onSubscribe(
 new RangeSubscription<>(actual, …)
)
 }
}

final class FluxRange<T> ... {

 void subscribe(Subscriber actual) {
 actaul.onSubscribe(
 new RangeSubscription<>(actual, …)
)
 }
}

final class FluxRange<T> ... {

 void subscribe(Subscriber actual) {
 actaul.onSubscribe(
 new RangeSubscription<>(actual, …)
)
 }
}

Phase 2: Subscription

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

.subscribe(subscriber)

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

Subscriber#onSubscribe(Subscription)Subscription

Phase 3: Runtime

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

.subscribe(subscriber)

Flux.range(0, 100)
 .map(Object::toString)
 .filter(s -> s.length() > 2)
 .take(5)

Subscription#request(1)5

SubscriberSubscriber#onNext()#onComplete()

Phases: Summary

• At least 2 Objects Allocation per Operator

Phases: Summary

• At least 2 Objects Allocation per Operator - Means more GC Pauses

Phases: Summary

• At least 2 Objects Allocation per Operator - Means more GC Pauses
• Deeeeeeep Stacktrace

Phases: Summary

onNext:158, BaseSubscriber (reactor.core.publisher)
onNext:122, FluxTake$TakeSubscriber (reactor.core.publisher)
onNext:107, FluxFilter$FilterSubscriber (reactor.core.publisher)
onNext:213, FluxMap$MapConditionalSubscriber (reactor.core.publisher)
request:107, FluxRange$RangeSubscription (reactor.core.publisher)
request:281, FluxMap$MapConditionalSubscriber (reactor.core.publisher)
request:179, FluxFilter$FilterSubscriber (reactor.core.publisher)
request:154, FluxTake$TakeSubscriber (reactor.core.publisher)
onSubscribe:146, BaseSubscriber (reactor.core.publisher)
onSubscribe:99, FluxTake$TakeSubscriber (reactor.core.publisher)
onSubscribe:79, FluxFilter$FilterSubscriber (reactor.core.publisher)
onSubscribe:185, FluxMap$MapConditionalSubscriber (reactor.core.publisher)
subscribe:68, FluxRange (reactor.core.publisher)
subscribe:59, FluxMap (reactor.core.publisher)
subscribe:53, FluxFilter (reactor.core.publisher)
subscribe:56, FluxTake (reactor.core.publisher)
main:14,

Stacktrace
onNext:158, BaseSubscriber (reactor.core.publisher)
onNext:122, FluxTake$TakeSubscriber (reactor.core.publisher)
onNext:107, FluxFilter$FilterSubscriber (reactor.core.publisher)
onNext:213, FluxMap$MapConditionalSubscriber (reactor.core.publisher)
request:107, FluxRange$RangeSubscription (reactor.core.publisher)
request:281, FluxMap$MapConditionalSubscriber (reactor.core.publisher)
request:179, FluxFilter$FilterSubscriber (reactor.core.publisher)
request:154, FluxTake$TakeSubscriber (reactor.core.publisher)
onSubscribe:146, BaseSubscriber (reactor.core.publisher)
onSubscribe:99, FluxTake$TakeSubscriber (reactor.core.publisher)
onSubscribe:79, FluxFilter$FilterSubscriber (reactor.core.publisher)
onSubscribe:185, FluxMap$MapConditionalSubscriber (reactor.core.publisher)
subscribe:68, FluxRange (reactor.core.publisher)
subscribe:59, FluxMap (reactor.core.publisher)
subscribe:53, FluxFilter (reactor.core.publisher)
subscribe:56, FluxTake (reactor.core.publisher)
main:14,

onNext:158, BaseSubscriber (reactor.core.publisher)
onNext:122, FluxTake$TakeSubscriber (reactor.core.publisher)
onNext:107, FluxFilter$FilterSubscriber (reactor.core.publisher)
onNext:213, FluxMap$MapConditionalSubscriber (reactor.core.publisher)
request:107, FluxRange$RangeSubscription (reactor.core.publisher)
request:281, FluxMap$MapConditionalSubscriber (reactor.core.publisher)
request:179, FluxFilter$FilterSubscriber (reactor.core.publisher)
request:154, FluxTake$TakeSubscriber (reactor.core.publisher)
onSubscribe:146, BaseSubscriber (reactor.core.publisher)
onSubscribe:99, FluxTake$TakeSubscriber (reactor.core.publisher)
onSubscribe:79, FluxFilter$FilterSubscriber (reactor.core.publisher)
onSubscribe:185, FluxMap$MapConditionalSubscriber (reactor.core.publisher)
subscribe:68, FluxRange (reactor.core.publisher)
subscribe:59, FluxMap (reactor.core.publisher)
subscribe:53, FluxFilter (reactor.core.publisher)
subscribe:56, FluxTake (reactor.core.publisher)
main:14,

onNext:158, BaseSubscriber (reactor.core.publisher)
onNext:122, FluxTake$TakeSubscriber (reactor.core.publisher)
onNext:107, FluxFilter$FilterSubscriber (reactor.core.publisher)
onNext:213, FluxMap$MapConditionalSubscriber (reactor.core.publisher)
request:107, FluxRange$RangeSubscription (reactor.core.publisher)
request:281, FluxMap$MapConditionalSubscriber (reactor.core.publisher)
request:179, FluxFilter$FilterSubscriber (reactor.core.publisher)
request:154, FluxTake$TakeSubscriber (reactor.core.publisher)
onSubscribe:146, BaseSubscriber (reactor.core.publisher)
onSubscribe:99, FluxTake$TakeSubscriber (reactor.core.publisher)
onSubscribe:79, FluxFilter$FilterSubscriber (reactor.core.publisher)
onSubscribe:185, FluxMap$MapConditionalSubscriber (reactor.core.publisher)
subscribe:68, FluxRange (reactor.core.publisher)
subscribe:59, FluxMap (reactor.core.publisher)
subscribe:53, FluxFilter (reactor.core.publisher)
subscribe:56, FluxTake (reactor.core.publisher)
main:14,Assembly

Su
bs

cr
ip

tio
n

R
un

tim
e

Phases: Summary

• At least 2 Objects Allocation per Operator - Means more GC Pauses
• Deeeeeeep Stacktrace - Means less efficient C2 and less Inlinings

https://docs.oracle.com/javase/8/embedded/develop-apps-platforms/codecache.htm#BABGGHJE

https://docs.oracle.com/javase/8/embedded/develop-apps-platforms/codecache.htm#BABGGHJE

Phases: Summary

• At least 2 Objects Allocation per Operator - Means more GC Pauses
• Deeeeeeep Stacktrace - Means less efficient C2 and less Inlinings
• Every request(N)invocation leads to an additional volatile write

Phases: Summary

• At least 2 Objects Allocation per Operator - Means more GC Pauses
• Deeeeeeep Stacktrace - Means less efficient C2 and less Inlinings
• Every request(N)invocation leads to an additional volatile write -

Means more expensive CPU instructions

Or Make Imperative Great Again
Do LESS operators

Rule 1

Code Session

Rule 1: Summary

• Reduce number of plain operators like map / filter / doOnXXX
• Replace trailing map + filter -> handle

Reactive-Streams
Heavy Operators

Reactive Streams: Heavy Operators

• FluxFlatMap

Reactive Streams: Heavy Operators

SubStream

SubStream

SubStream

M
ai

n
St

re
am

Q
ue

ue
Q

ue
ue

Q
ue

ue

Drain Loop

re
qu

es
t(1

)

Concurrent
SpScQueue

Concurrent
SpScQueue

Concurrent
SpScQueue

• FluxFlatMap
• FluxGroupBy

Reactive Streams: Heavy Operators

SubStream

SubStream

SubStream

M
ai

n
St

re
am

Q
ue

ue
Q

ue
ue

Q
ue

ue

• FluxFlatMap
• FluxGroupBy 

• FluxPublishOn

Reactive Streams: Heavy Operators

• FluxFlatMap
• FluxGroupBy 

• FluxPublishOn  

• FluxConcatMap

Reactive Streams: Heavy Operators

Concurrent SpScQueue

• FluxFlatMap - N Queues per Streams

• FluxGroupBy 

• FluxPublishOn  

• FluxConcatMap

Heavy Operators: Summary

(Max N = Max Concurrency)

• FluxFlatMap - N Queues per Streams + volatile read/write per Element
• FluxGroupBy - N Queues per Streams 

• FluxPublishOn  

• FluxConcatMap

Heavy Operators: Summary

(Max N = Unlimited)

• FluxFlatMap - N Queues per Streams + volatile read/write per Element
• FluxGroupBy - N Queues per Streams 

• FluxPublishOn - volatile read/write per Element 

• FluxConcatMap

Heavy Operators: Summary

• FluxFlatMap - N Queues per Streams + volatile read/write per Element
• FluxGroupBy - N Queues per Streams 

• FluxPublishOn - volatile read/write per Element 

• FluxConcatMap - one extra Queue Object

Heavy Operators: Summary

Whenever It Possible
Avoid flatMap

Rule 2

Code Session

Rule 2: Summary

• Handle Errors with Handle (flatMap + try/catch -> handle)
• Replace FlatMap with ConcatMap for synchronous sub streams

Whenever It Possible
Know Your Tool

Rule 3

Code Session

Rule 3: Summary

• FlatMap / ConcatMap / PublishOn /
• Queues can give different Queue impl with different performance

characteristics
• Reduce number of request(N) by tuning prefetch params

Whenever It Possible
Use Shiny Graal

Rule 4

Reactor JDK 8

Reactor GraalEE

Reactor JDK 8

Reactor GraalEE

Reactor JDK 8

Reactor GraalEE

Reactor GraalCE

Reactor JDK 8

Reactor GraalEE

Reactor GraalCE

Takeaways
• Avoid Operators redundancy
• Use Imperative
• Use flatMap correctly
• Tune your Reactor
• Get better inlining with Graal

@OlehDokuka

