Тестирование оптимизаций в кластерах баз данных

Контур

Сергей Махетов

Ведущий специалист по тестированию

О себе

В области разработки ПО > 10 лет, тестирование > 5 лет.

Специализация: Инфраструктурные решения (интеграционные шины и системы хранения данных)

Стек: Java/Linux, Scala, JMeter, Gatling

Системы на текущий момент: Kafka, ES, ClickHouse

О системе, в поддержке и совершенствовании которой принимаю участие

Команда телеметрии Контура – логи, метрики, распределенные трассировки

Различные хранилища – ElasticSearch, ClickHouse, Kafka, Cassandra, ...

Повышенные требования к производительности (> 3 000 000 Events per second)

Хостимся не в публичных облаках

Когда не хватает ресурсов БД

Накинуть железа(ресурсов в облаке)?

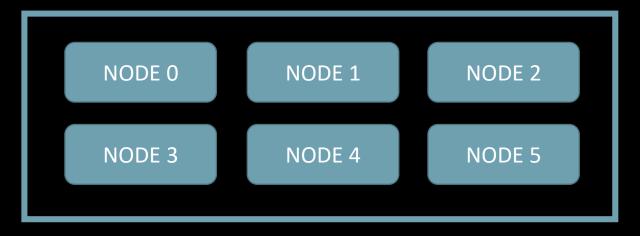
Снизить нагрузку со стороны клиентов?

Оптимизировать!

План

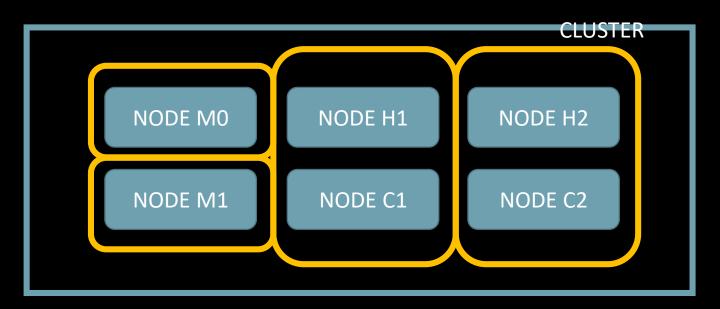
- Терминология
- 3 кейса оптимизации
- Оптимизация в общем
- Особенности тестирования
- Осознанность проведения оптимизаций

Терминология


Кластер

• (англ. cluster «скопление, кисть, рой») — объединение нескольких однородных элементов, которое может рассматриваться как самостоятельная единица, обладающая определёнными свойствами.

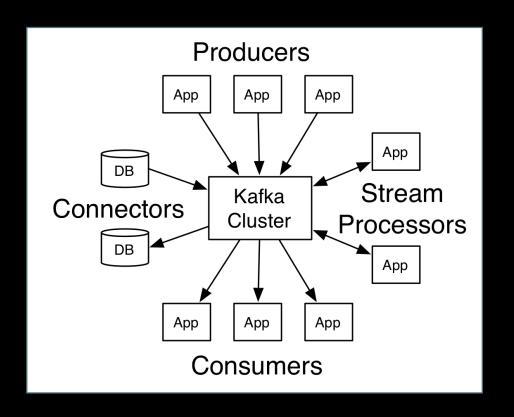
Нода


• (от лат. nodus — узел), отдельный узел кластера(сервер БД)

CLUSTER

Нода

- Может быть несколько на сервере
- Может иметь специализацию


Кейс 1. Нежватка ресурсов в Кафке

Apache Kafka

- Распределенная стримминговая платформа
- Горизонтально масштабируется
- Отказоустойчивая
- Производительная

Apache Kafka

Высокая утилизация (до 80%) дисков и сети на множестве серверов

Нет возможности роста без закупа оборудования

Малый запас для эксплуатационных действий

	CPU	LAN	DISC
Node1	30	70	66

Высокая утилизация (до 80%) дисков и сети на множестве серверов

Нет возможности роста без закупа оборудования

Малый запас для эксплуатационных действий

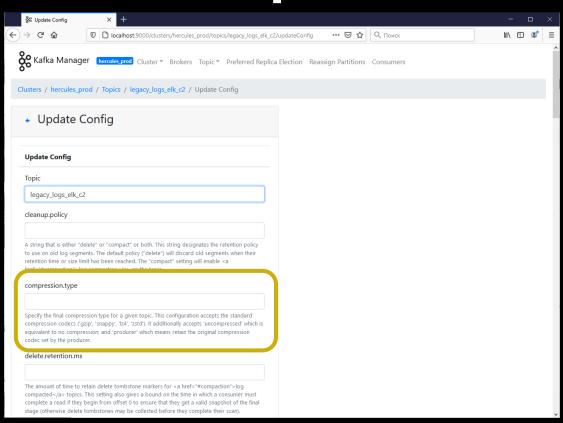
	CPU	LAN	DISC
Node1	30	70	66
Node2	28	67	80

Высокая утилизация (до 80%) дисков и сети на множестве серверов

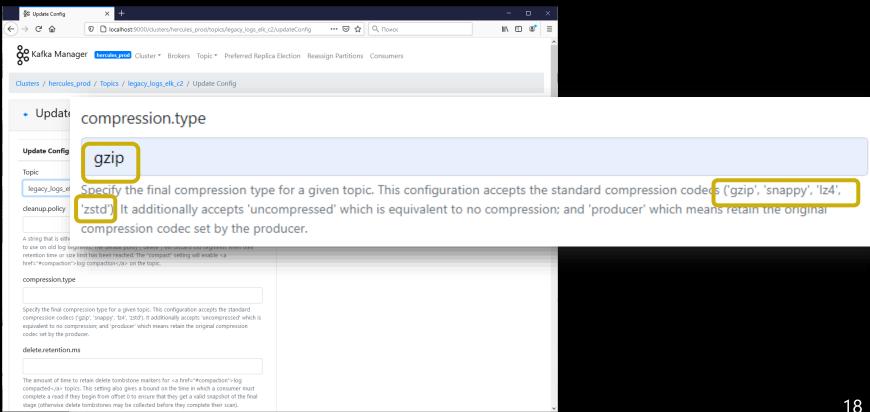
Нет возможности роста без закупа оборудования

Малый запас для эксплуатационных действий

	CPU	LAN	DISC
Node1	30	70	66
Node2	28	67	80
Node3	43	72	70


Высокая утилизация (до 80%) дисков и сети на множестве серверов

Нет возможности роста без закупа оборудования


Малый запас для эксплуатационных действий

	CPU	LAN	DISC
Node1	30	70	66
Node2	28	67	80
Node3	43	72	70
Node N	30	81	66

Изменение настроек сжатия

Изменение настроек сжатия

Графики и отчеты

Положительный эффект

Дисковая и сетевая активность упала от 2-х до 4-х раз в зависимости от данных

Не надо покупать оборудование – растем еще в 2 раза

	CPU	LAN	DISC
Node1	33	30	25
Node2	32	33	43
Node3	46	35	30
Node N	36	40	40

Издержки

Первоначальные

• Неделя на тестирование(регрессионное, конфигурационное)

Эксплуатационные

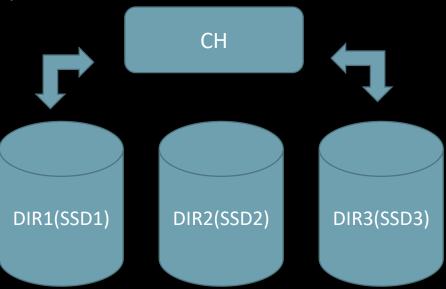
- Незначительно повысилось потребление CPU на клиентах
- Неудобство анализа данных (сжатый трафик похож на шифрованный)

Кейс 2. Высокая утилизация дисков в ClickHouse

Clickhouse от Яндекс

ClickHouse - столбцовая система управления базами данных (СУБД) для онлайн обработки аналитических запросов (OLAP).

Высокая производительность на вставку


Тонко настраиваемое сжатие данных

SQL - синтаксис

Папки, в которых хранятся данные кликхауса, смонтированы на jbod **JBOD** (от англ. Just a bunch of disks, просто пачка дисков)

«/dir1,/dir2,/dir3»

1 файл – 1 диск

Отдельные диски утилизируются на 100%

Низкая скорость вставки

Растут внутренние очереди

1 min
SSD1 90
SSD2 5
SSD3 7

Отдельные диски утилизируются на 100%

Низкая скорость вставки

Растут внутренние очереди

	1 min	2 min
SSD1	90	10
SSD2	5	92
SSD3	7	9

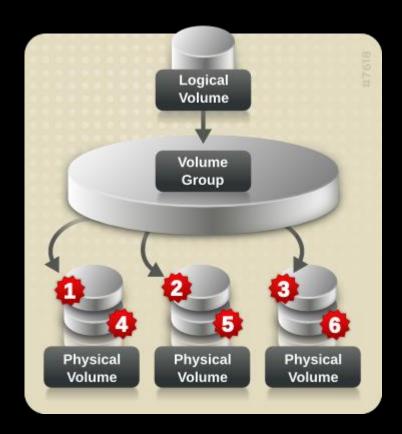
Отдельные диски утилизируются на 100%

Низкая скорость вставки

Растут внутренние очереди

	1 min	2 min	3 min
SSD1	90	10	6
SSD2	5	92	100
SSD3	7	9	12

Отдельные диски утилизируются на 100%

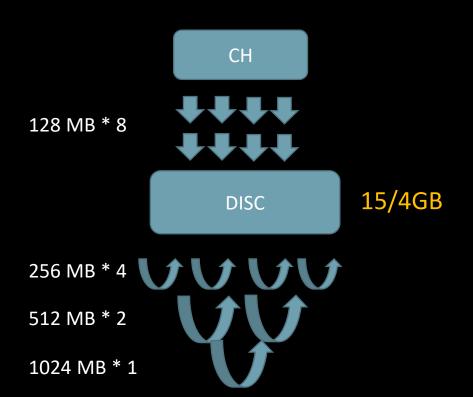

Низкая скорость вставки

Растут внутренние очереди

	1 min	2 min	3 min	4 min
SSD1	90	10	6	8
SSD2	5	92	100	9
SSD3	7	9	12	92

Striped LVM/RAID0

- Логический том с чередованием
- Для приложения один диск (директория)
- Параллельная запись на несколько дисков


Стало

Равномерное распределение нагрузки по дискам

Высокая производительность на вставку – очередь не копится

					Ι
	1 min	2 min	3 min	4 min	
SSD1	60	55	63	65	
SSD2	60	56	63	65	
SSD3	60	56	63	66	

Большое количество обращений к диску

In-memory Table(Buffer Engine)

Уменьшение количества дисковых **ІО**

	1 min	2 min	3 min	4 min
SSD1	60	55	63	65
SSD2	60	56	63	65
SSD3	60	56	63	66

	1 min	2 min	3 min	4 min
SSD1	25	31	19	22
SSD2	24	31	19	22
SSD3	25	31	20	21

Выгода

Смогли поднять производительность сервера в 2 раза, освободив некоторые сервера под другие нужды

Отпала необходимость в приобретении высокопроизводительных дорогих дисков

Чтение свежих данных ускорилось, потому что они хранятся в in-memory таблице

Издержки

Первоначальные

- Исследование архитектуры
- Несколько недель тестирования

Эксплуатационные

• Увеличение сложности архитектуры !!!

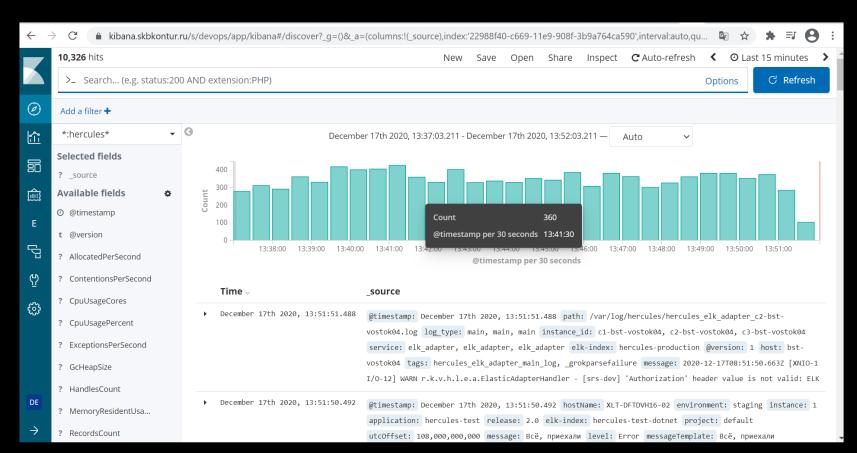
Риски

- Возможная потеря данных в in-memory таблице при перезапуске
- Lvm при отказе одного диска теряются все данные массива

Кейс 3. Жизненный цикл индексов ElasticSearch

ElasticSearch

Распределенный поисковой движок


Быстрый полнотекстовый поиск

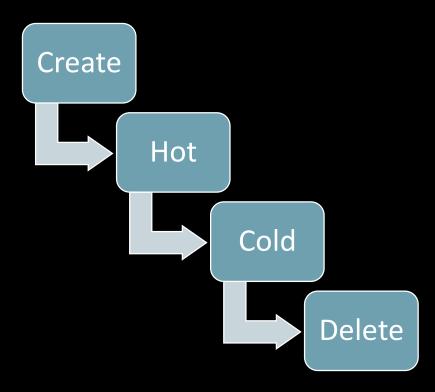
RestFull API

noSQL

ElasticSearch

ES Index

Индекс – как будто таблица в БД


Имя

- sentry-prod-kafka-2021.06.17
- sentry-prod-kafka-2021.06.18
- elk-staging-curator-2021.06.18

Index pattern

- sentry-prod-kafka-*
- elk-*-curator*

ES index lifecycle

Неравномерность размеров индексов

Для каждой команды каждый день создается несколько индексов.

Сотни мелких индексов(1 МВ) – много накладных расходов на обслуживание и мониторинг

Огромными индексами больших команд (2 ТВ) - сложно управлять (дорогой переезд на разные фазы жизненного цикла, дорогое перемещение при балансировке)

Равноразмерные индексы

Создание индексов не ежедневно а при соблюдении условий – 30 дней или 30 гигабайт

Имя

- sentry-prod-kafka-0000001
- sentry-prod-kafka-0000002
- elk-staging-curator-0000001

Выгоды

- Более ровное распределение индексов, они одинакового размера
- Нет слишком больших и слишком маленьких
- Улучшение эксплуатационных свойств системы

Издержки

На внедрение

- Несколько недель на исследование и тестирование
- Переписывание скриптов для управления жизненным циклом
- Изменение логики работы со стороны клиентов на вставку

Эксплуатационные

- Нужна длительная параллельная поддержка обоих жизненных циклов
- Усложнение сопоставления индекса и данных в них

Оптимизации и тестирование

Требования к кластеру

- Функциональность
- Производительность
- Отказоустойчивость
- Удобство эксплуатации
- * Цена (Железо, люди)

Оптимизации

Оптимизация — процесс максимизации выгодных характеристик, соотношений (например, оптимизация производственных процессов и производства), и минимизации расходов.

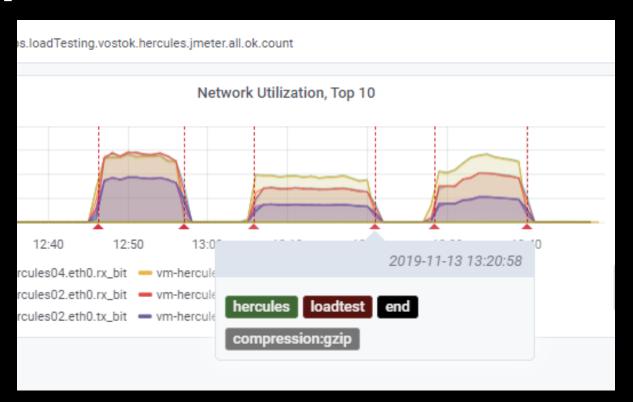
Более эффективное использование ресурсов обычно требует компромиссов (tradeoff) — один параметр оптимизируется за счёт других.

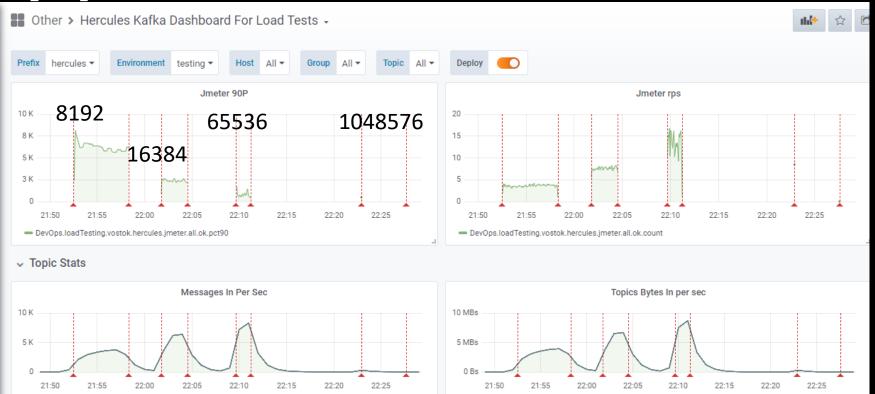
Оптимизации

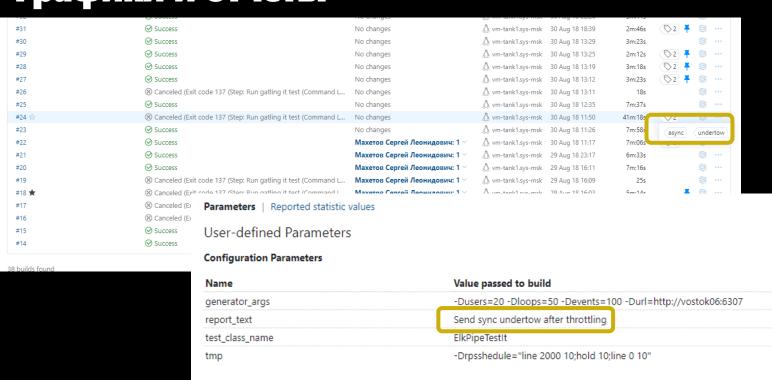
- Настройки(сжатие, размеры буферов, очередей, количество потоков, размер пачки сообщений)
- Настройки ресурсов(выделение памяти, дисков, сети, процессора)
- Настройки шардирования и жизненного цикла(Hot-Cold фазы, размер шард, количество шард)
- Оптимизация передачи и хранения (буферные таблицы, индексы, форматы передачи данных)
- Локализация сетевого трафика

Настройки

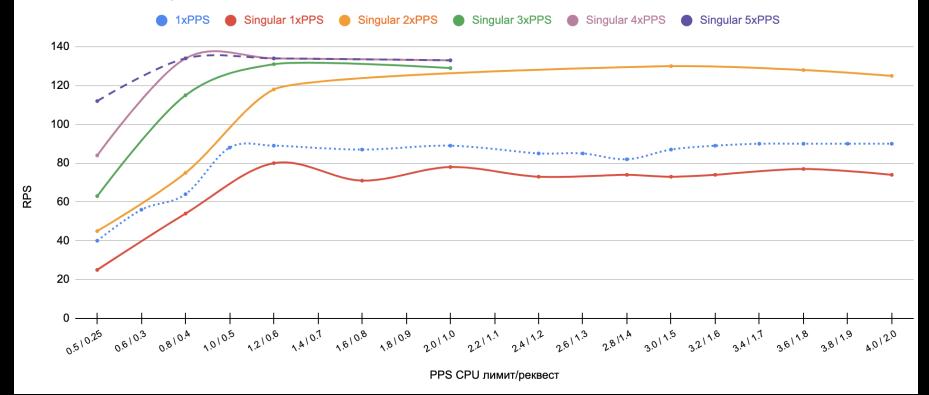
```
□# Xms represents the initial size of total heap space
# Xmx represents the maximum size of total heap space
 -Xms20q
 -Xmx20q
 ## Expert settings
 ## All settings below this section are considered
 ## expert settings. Don't tamper with them unless
 ## you understand what you are doing
 ## GC configuration
 -XX:+UseG1GC
 -XX:MaxGCPauseMillis=300
 -XX:InitiatingHeapOccupancyPercent=30
 -XX:G1ReservePercent=25
```

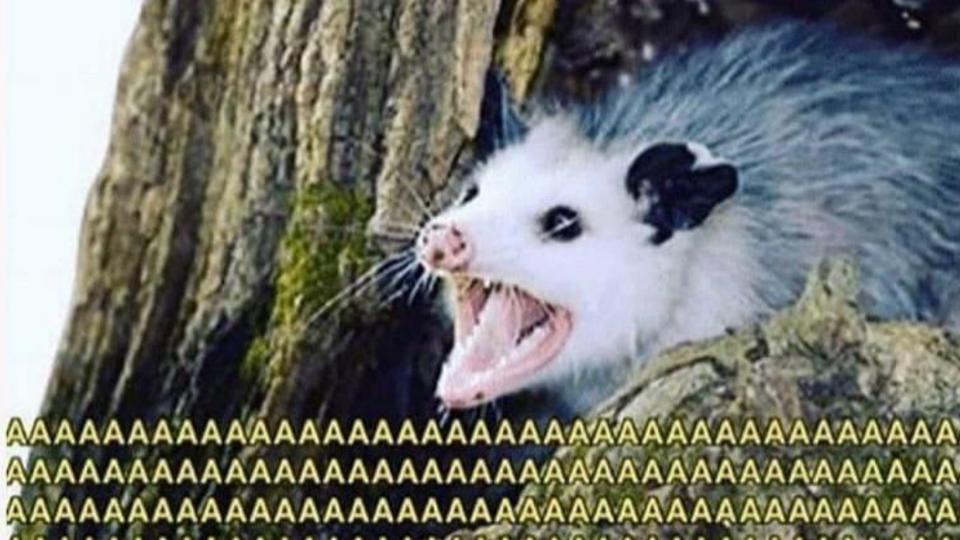

Тестирование


- Определяем узкие места
- Фиксируем состояние системы до оптимизации
- Применяем оптимизацию
- Проводим тестовые испытания с фиксацией состояния системы
- Анализируем результат
- Оцениваем риски


Тестирование

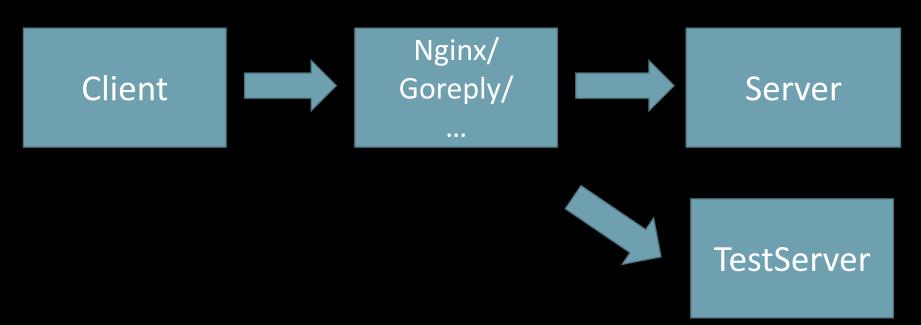
- Функциональное (регрессионное)
- Производительности (нагрузочное, стресс)
- Эксплуатационное
- На отказ и восстановление
- Объемное


Три рекомендации по тестированию



RPS Predict Proxy

Хорошие тестовые данные


'{"id":" ec01ec88-cf7b-4019-a5b5-a20614bfbfc0","starttime":"June 17th 2021, 11:04:32.209","endtime":"June 21th 2021, 13:06:32.209","parentid":" 24bd6db3-a275-4bac-8318-20762289852d","bytes":"U29tZVRlc3RUZXh0VG9ieXRlcw=="}'

```
DDDEDÏJÃ@DÆ_%ì9Ûî¿&&'[ÛzDDôä%1°Dm0ÉDÍ"Dø|DD_ÁK DZ<éÕDD:Ìe~óññÍ<£J?ê
¥H;gD
QeDÑDÀ¥ôUÙDàDBtîËZ·^Ö;Ø2Â(&D¦ñDDRD¥D08S÷ DQ+DDQ@DÏnm-D^WÖ´DT´DETa¢XDDÛP¾I4Ç*¢üLhUÌhD.~ë´T`RË'AaDÖÎÖ§X#y?D
Ý[ÿÝDCÿÓ}ÂîuÿñÛiû.ø:ÑDÝ8DC¤kYDDD*ÆD¦eãµkdDå®O¦Ê6j´ÕOyDgæDÞÉ\g[ÙnÇDD!DgóxÍ ¿DËDÍÅDDÅbÅVËÿÇA°DD"DDDDD¥,DD$/ [ÓD;gD
```

Протоколы передачи и хранения

Текстовый	Бинарный
XML, JSON, PLAIN TEXT	Apache Avro, Google Protocol Buffers, BSON
Человекочитаемость	Высокая компактность, скорость обработки
Легкая генерация, множество инструментов	Дополнительные затраты на генерацию

Дублируем с прода

Повторяем с прода

tcpreplay TcpDump NetDump C* fqltool C* fqltool FullQuerylog reply TestServer

Wireshark export bytes

```
"tcp.payload raw": [
  "485454502f312e3120323030204f4b0d0a5365727665723a20616b6b612d687474702
 54,
 1460,
 0.
  30
"tcp.reassembled in": "128",
"tcp.segment data_raw": [
  "485454502f312e3120323030204f4b0d0a5365727665723a20616b6b612d687474702
 54,
 1460,
  30
"tcp.segment data": "48:54:54:50:2f:31:2e:31:20:32:30:30:20:4f:4b:0d:0a:
```

Идентичность стендов тестирования и эксплуатации

- Неожиданное поведение
- 4 виртуальных ядра != 4 реальных
- Большой объем свободной памяти отдается под page cache
- Сеть 10 Gbps работает не так, как 1 Gbps

• ...

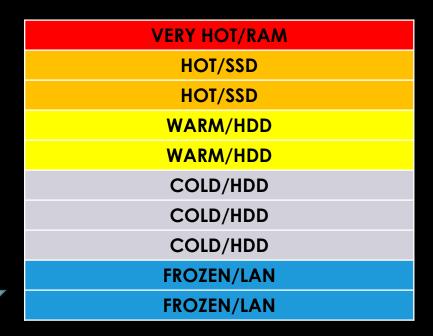
Идентичность стендов тестирования и

эксплуатации

Дополнительные особенности работы БД

Отложенные операции в БД

- Backup
- Merge, optimize, compaction
- Переезд на другие фазы


Фазы хранения

 А что, если хранить не все данные на SSD, а редкоиспользуемые данные отправить на HDD?

 Внутри одной ноды, одного сервера, одного кластера, между разных кластеров

Фазы хранения

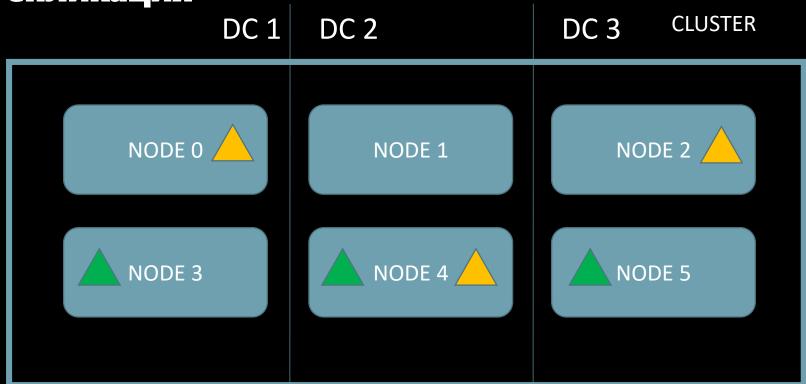
Скорость доступа

Цена хранения

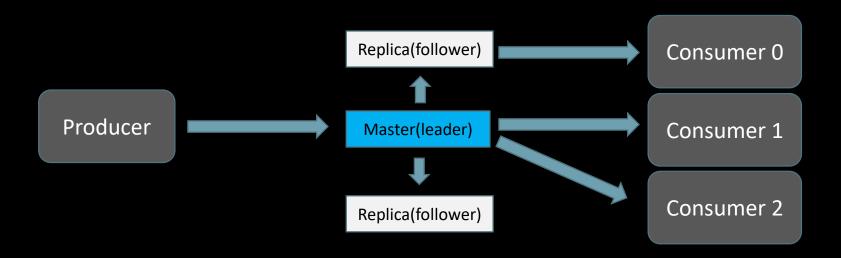
Фазы хранения

Скорость доступа Цена хранения

VERY HOT/RAM	
HOT/SSD	
HOT/SSD	
WARM/HDD	
WARM/HDD	
COLD/HDD	
COLD/HDD	
COLD/HDD	
FROZEN/LAN	
FROZEN/LAN	


- Цена перемещения?
- Цена выполнения служебных операций?

Репликация и шардирование


Репликация

- Хранение копий данных на разных узлах кластера
- Обеспечение сохранности данных в случае сбоев системы
- Увеличение количества узлов для чтения данных
- Географическая локализация данных ближе к читателям

Репликация

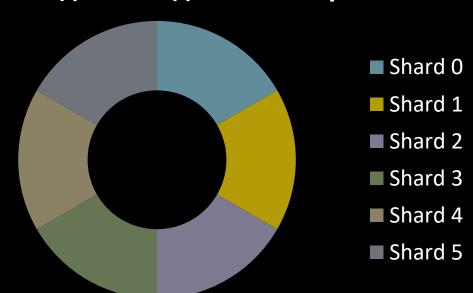
Репликация

Репликация. Что тестировать

• Время и затраты ресурсов на восстановление

• Локализация потребления данных, объем трафика

• Работу механизмов выбора лидерства


Шардирование

• Шардирование

• Секционирование

•Партиционирование

Разделение данных на кусочки

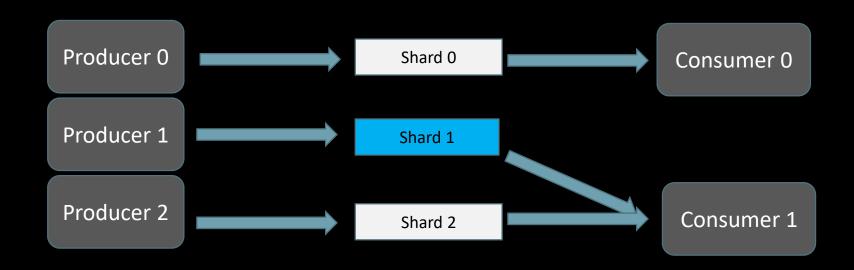
Шардирование

Year	Data
2021	
2021	
2021	
2021	
2020	
2020	•••

Шардирование вертикальное

Year	Data
2021	
2021	
2021	
2021	
2020	
2020	•••

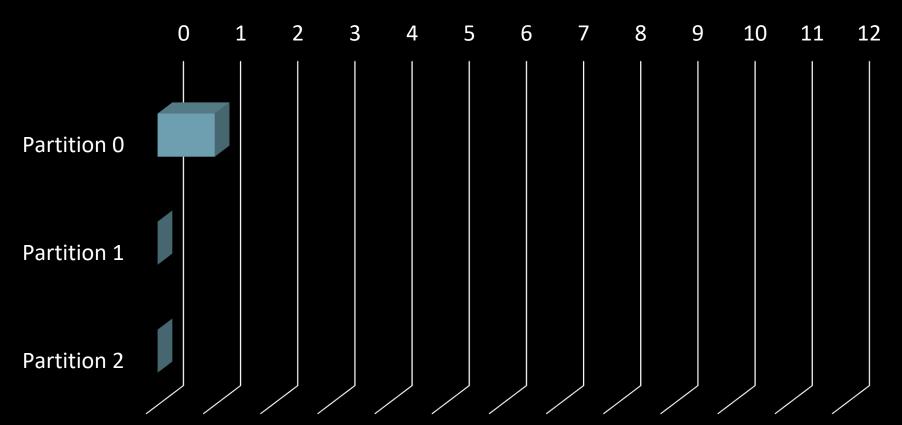
Year	Data	Shard
2021		1
2021		1
2021		1
2021		1
2020		0
2020		0

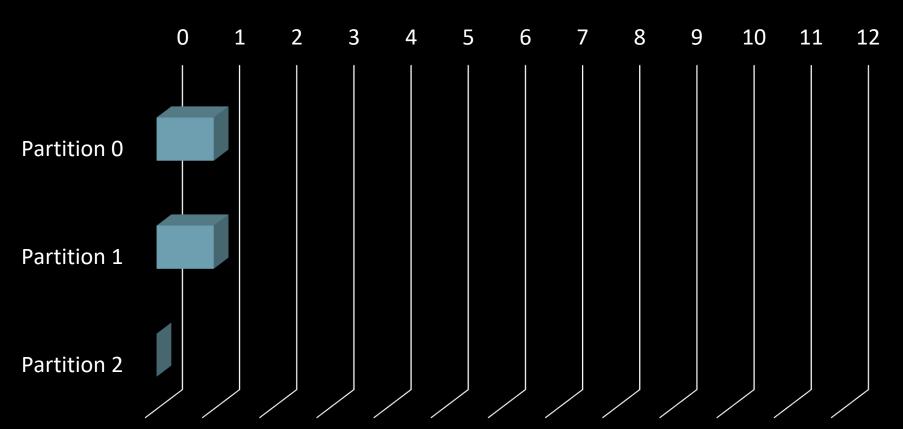

Шардирование вертикальное и горизонтальное

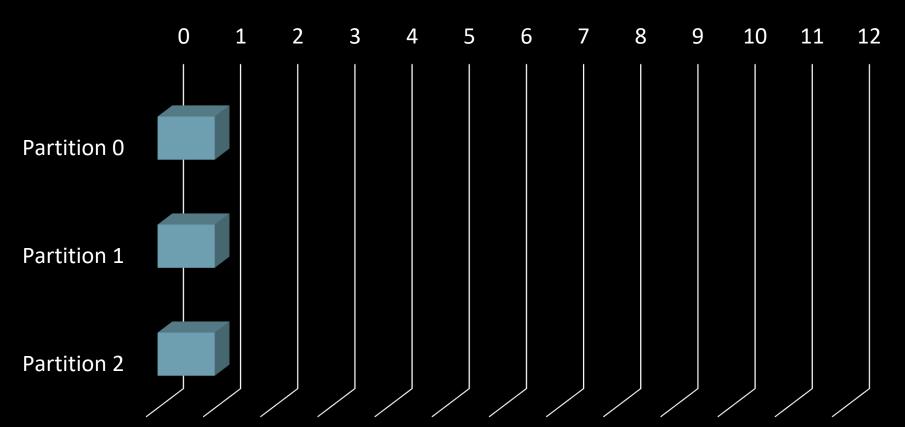
Year	Data
2021	
2021	
2021	
2021	
2020	
2020	

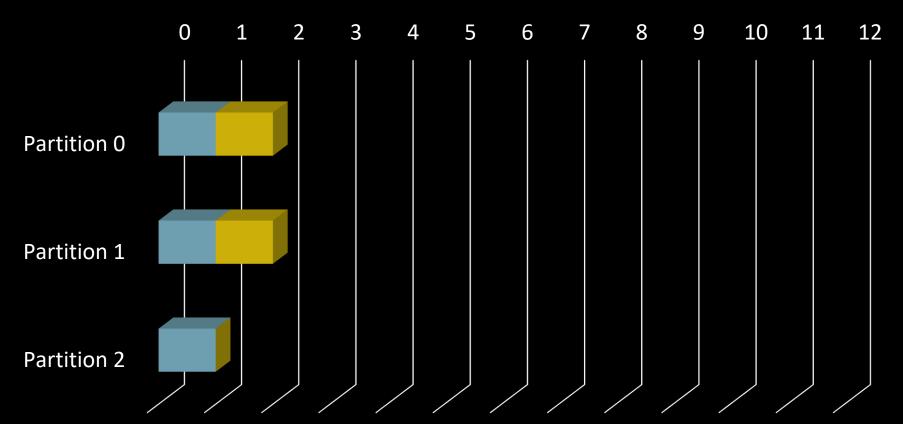
Year	Data	Shard
2021		1
2021		1
2021		1
2021		1
2020		0
2020		0

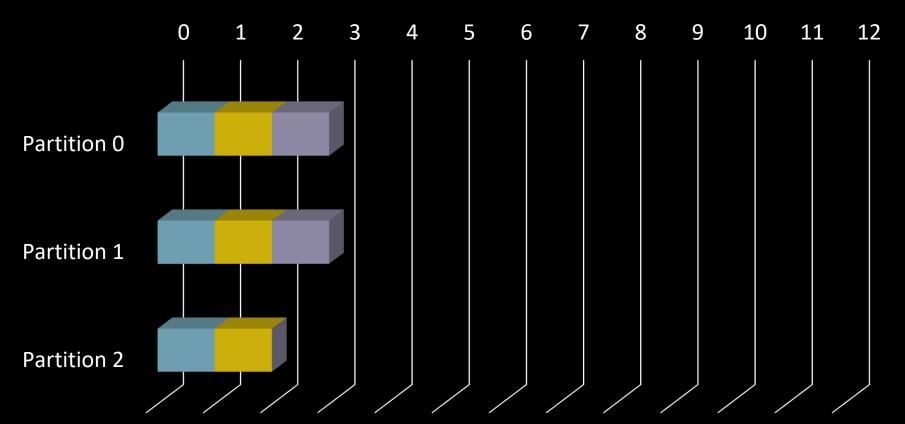
Year	Data	Shard
2021		0
2021		1
2021		0
2021		1
2020		0
2020		1

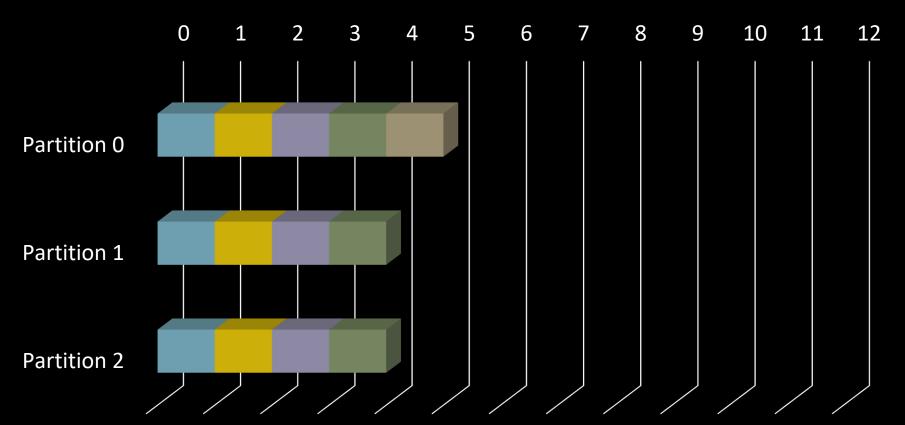

Шардирование




Шардирование


CLUSTER





Шардирование

Плюсы-минусы шардирования

- + увеличение производительности за счет параллелизации
- + более равномерное использование ресурсов кластера

- много сущностей файловые дескрипторы, потоки и т.п.
- Затраты на обслуживание большого количества шард

Тест разного количества партиций

Количество партиций	Скорость записи (MB/S)	Скорость чтения (MB/S)
1	39	86
3	86	199
5	97	201

Что тестировать?

Производительность одного шарда(партиции)

Динамику роста производительности

Равномерность утилизации ресурсов

Предел производительности

Выполнение отложенных операций

Про риски, требования и затраты

Риски

Искажение (порча) данных

Частичная или полная потеря данных

Временная недоступность сервиса на чтение и/или запись

Снижение скорости работы сервиса


Требования

А действительно ли снижение характеристик работы системы недопустимо?

Можно ли снизить входящий поток или интенсивность чтения?

А точно данные нужно хранить продолжительное время?

Баланс

Второе дерево

Второе дерево

Насколько дорого закидать ресурсами?

Закладывать железо при увеличении сложности оптимизаций или появления рисков ухудшения характеристик кластера

Итого

- Оценка рисков и затрат, явных и неявных
- Не все оптимизации одинаково полезны
- Может вырастить еще одно дерево?

tech.kontur.ru

Сергей Махетов

