Testing Distributed Systems

A systematic approach to
reliability

Jack Vanligntl

BRaboIt

§€ kafka

7 X PULSAR

Distributed Systems Are Hard...

O Multiple processes, actors and the environment interacting
concurrently

O Hard to reason about, hard to test:
- combinatorial explosion of possible interactions

Race Conditions
There is no now (clock skew)

. Concurrenc
Failures y

Unanticipated sequences of events

Case Study - Apache Katka Replication

Introduction to message replication

HW)

LEOmmp

"

Leader
Replica

Fetch Request
(LEO)

-
=)

Fetch Response
(Messages,
HW)

-

Follower
Replica

@@= [FO 4m HW

Case Study - Apache Katka Replication

Leader Fail-Over and Without Message Loss

m

m4

m

m

m

Eeddereh A

&= HW

—

HW

m5

m?2

m1l

Eeldercl B

m

m

m

m

Follower C

= HW

Case Study - Apache Katka Replication

Leader Fail-Over and With Message Loss

—

a I
T
|

Follower A

/

\

T

m8

m7

m

_ms
_m7

Eedderet C

Case Study - Apache Katka Replication

See the Protocol Defect?

m4

m3

m2

m

Eeddereh A

—
—)

_

)

Eeddered B

Distributed Systems Are Hard...

A Test Strategy for Distributed
Systems...

The Test Pyramid

-
TestPyramid

Martin Fowler
1 May 2012
& Y '

The test pyramid is a way of thinking about different kinds of
automated tests should be used to create a balanced portfolio. Its
essential point is that you should have many more low-level UnitTests
than high level BroadStackTests running through a GUI.

—~

The Testing Trophy Q@ o :
“The Testing Trophy" "’

A general guide for the **return on
investment™ §§ of the different forms
of testing with regards to testing
JavaScript applications.

- End to end w/ @Cypress_io . :
- Integration & Unit w/ @fbjest X

- Static w/ @flowtype F and @geteslint
2

‘ Guillermo Rauch @
) & Following v
@rauchg

Write tests. Not too many. Mostly integration.

8:43 AM - 10 Dec 2016 from San Francisco, CA

111 Retweets 357 Likes Q.@O Q"O\ﬁ w.

Q 16 11 111 ¥ 357 M

The Testing Cafetiere

= Randomized N
0 Sstem Test
(2 1 Iy

Jack Vanlightly
@vanlightly

Integration
Test

" Unit Test

A multi-layered test
Strategy]COI" v F.(;_rm?.l
distributed systems.

(44

human fallibility means that some of the more subtle,
dangerous bugs turn out to be errors in design;

the code faithfully implements the intended
design, but the design fails to correctly handle a
particular ‘rare’ scenario.

We have found that testing the code is inadequate as a
method to find subtle errors in design.

Use of Formal Methods at Amazon Web Services (Paper)

Designs need to be tested too

¢ formal verification is the act of proving or disproving

the correctness of intended algorithms ...

with respect to a certain formal specification or
property,

using formal methods of mathematics.

Wikipedia

Sounds kinda scary...

TLA+ is a formal specification and verification

language that helps engineers design, specity,
reason about and verity complex, real-life
algorithms and software or hardware systems.

Ron Pressler

Less scary...

Exhaustively testable pseudo-code

Use of Formal Methods at Amazon Web Services (Paper)

Sounds pretty cool...

{4
In order to find subtle bugs in a system design, itis

necessary to have a precise description of that design ...

In contrast, conventional design documents consist of
orose, static diagrams, and perhaps pseudo-code in an ad
hoc untestable language.

Such descriptions are far from precise; they are often
ambiguous, or omit critical aspects.

Use of Formal Methods at Amazon Web Services (Paper)

Complex designs need precision...

Correctness of the algorithm means that the
program satisfies a desired property.

Leslie Lamport

Correctness via Properties...

What are properties?

o Committed messages are not lost Safety
O Messages are stored in temporal order Safety

O Up to the High Watermark, of a given partition,
each replica consists of the same messages in the
same order

Safety

A safety property is one that is true for every reachable state

AKA an Invariant

What are properties?

O If a message is sent to the leader replica, it must |
eventually be replicated to all followers, as long as Liveness
the leader does not die

O If the leader dies and there are followers, then

eventually a follower will be elected leader Liveness

A liveness property describes what must eventually happen

TLA+and TLC Together

O A TLA+ specification describes:
O The behaviour of the system

O Properties

O Safety properties (invariants)
O Liveness properties

o TLC (The model checker)
O Executes the specification

O Exhaustively checks all possible action sequences and
while veritying that invariants holad

Wow, a testing rramework for designs...

TLA+: A State Machine of States and Steps
Steps and States

TLA+ models time as a sequence of discrete
steps, where one step transitions from one
state to another.

=) k)) e)

Fach step consists of one or more actions.

Back to Apache Kafka Replication...

Define the Actions

The actions in our system:

1. Start a node
7. Shutdown a node

3.
4
o}

Become the partition leader
Recelve a message

Become a follower

6. Send a fetch request

7. Send a fetch response

Back to Apache Kafka Replication...

Define the Actions

What states are in our system?

1. Asingle node, without role, no messages, HW 0
2. Asingle node, leader, no messages, HW 0

3. Asingle node, leader, I message, HW 1

4. Asingle node, leader, 2 messages, HW 2

5. Two nodes:
- leader, 2 messages, HW 2
- none, 0 messages, HW 0

Back to Apache Kafka Replication...

Define the Actions

What states are in our system?

232. Two nodes:
- leader, 2 messages, HW 0
- follower, 1 message, HW 0

11,348. Three nodes:
- leader, 2 messages, HW 1
- follower, 2 messages, HW 0
- follower, 1 message, HW 0

Back to Apache Kafka Replication...

Define the Actions

What states are in our system?

87,348. Three nodes:
- leader, 8 messages, HW 6
- follower, 6 messages, HW 4 State

- follower, 6 messages, HW 4 Explogion

SUCCess

I

Closed

Yfail [threshold reached]

fail [under threshold]

-

call / raise circuit open

Open

fail

Y

reset timeout

SUCCess

Half Open

TLA+: A State Machine of States and Steps

How many states are there?

ID: 1 Role: None

LEO: O HW: O

ID: 1 Role: Leader
LEO: OHW: O

ID: 1 Role: Leader
LEO: 1 HW: 1

ID: 1 Role: Leader
LEO: 2 HW: 2

_

ID: 1 Role: Leader
LEO: 2 HW: 2

ID: 2 Role: None
LEO: O HW: O

ID: 1 Role: Leader
LEO: 2 HW: 2

ID: 2 Role: Follower
LEO: OHW: O

~

J

-

-

ID: 1 Role: Leader
LEO: 2 HW: 2

ID: 2 Role: Follower
LEO: 2 HW: 2

J

ID: 1 Role: Leader
&P (FO: 2 HW: 2

ID: 2 Role: Follower
LEO: OHW: O

~

J

ID: 1 Role: Leader
LEO: 2 HW: 2

ID: 2 Role: Leader
LEO: 2 HW: 2

~

ID: 1 Role: Leader
LEO: 2 HW: 2

ID: 2 Role: Follower
LEO: 2 HW: 2

~

ID: 1 Role: Leader
LEO: 2 HW: 2

ID: 2 Role: Leader
LEO: 3 HW: 3

~

/

| Start a node

Become leader
Receive message
Receive Message

Start a node
Become follower
Send fetch request
Send fetch response

Shutdown node
Become leader
Receive message

TLA+: A State Machine of States and Steps

How does TLA+ represent states and steps?

State: A TLA+ specification has variables

Steps: A TLA+ specification is formed by two principal
formulae:

Initial State Formula Next State Formula

) ke))

TLA+: A State Machine of States and Steps

Behaviours and states

satance. (=D D=0 =@ =0 =0 = O
Shutdown a node - ‘ - ‘ . ‘ . # . ‘ .

Become leader) - (] {- (]] > —> —>
Become Follower ‘ ‘ - - . [# .] - .

Receive Message ‘ ‘ - [- .] ‘ . - -
- = = = (= @]

Fetch Resionse i i i i i i

Fetch Request

. . =] What is the model?
BaCk to ApaChe Kafka Repllcatlon“' Specify the values of declared constants.
Finally, some actual TLA+

H {_{ "rI-I"l_ IIrIEII }

CONSTANTS N * the set of Kaftka nodes
VARIABLES node data,

node ldr,

confirmed leo,

pending req,

* meta data variables
curr_val,

committed msgs,

Back to Apache Kafka Replication... - What s the model?

Tnit
/\
/\

/\
/\
/\
/\

Specify the values of declared constants.

Define the Initial State

‘ N {_{ "rl-llll_ IIrIEII }

node ldr = "-"

node data = [n \in N |-> [id |-> n,
role |-> "offline",
hw |-> @, leo |-> 0,

~ log [-> {311

pending req = [n \in N |-> @]

confirmed leo = [n \in N |-> @]

committed msgs = {}

curr_val =1

Next
\/
\/

\/

\E n \in OfflineNodes
\E n \in LiveNodes

ReceiveMessage

/\ AND
\/ OR

\E there exists

: StartNode(n)

: \/

\/
\/
\/
\/

ShutdownNode(n)
BecomelLeader(n)

BecomeFollower(n)

SendFetchRequest(n)
SendFetchResponse(n)

Back to Apache Kafka Replication...
Define the Actions

LiveNodes ==
{ n \in N : node_data[n].role # "offline"}

OfflineNodes ==
{ n \in N : node_data[n].role = "offline"}

Back to Apache Kafka Replication... 7\ Ao
Anatomy of an action NI

StartNode(n) ==
* enabling condition ----------

/\ node data[n].role = "offline"

* next state ------------------
/\ node data' = [node data EXCEPT * no role yet

I'[n].role = "none",

* truncate log to HW

I'[n].leo = node _data[n].hw,

I'[n].log =

{ msg \in node data[n].log
: msg.offset <= node_data[n].hw

}]

Back to Apache Kafka Replication... 7\ o
Anatomy of an action \E there exists

ShutdownNode(n) ==
* enabling condition ----------
/\ Cardinality(LiveNodes) > 1
/\ node_data[n].role # "offline"

* next state -----------—-—-----
/\ node_data' = [node_data EXCEPT ![n].role = "offline"]

/\ IF n = node_ ldr
THEN node _ldr' = "-"
ELSE node ldr' = node_ ldr
/\ UNCHANGED << curr_val, confirmed leo, committed msgs,

Back to Apache Kafka Replication... 7\ o
Anatomy of an action # not equal

ReceilveMessage ==
* enabling condition ----------
X\ nGdE_ldP # n_n

* next state ------------mommn-
/\ LET msgOffset == node data[node ldr].leo + 1

IN /\ node data' = [node data EXCEPT ![node ldr].log = @ \cup {[offset |-> msgOoffset,
val |-> curr_vall},
'[node_ldr].leo = msgOffset]
/\ curr_val' = curr_val + 1
/\ confirmed leo' = [confirmed leo EXCEPT ![node ldr] = msgOffset]
/\ UNCHANGED << node_ldr, isr, pending req, committed msgs >>

Back to Apache Kafka Replication... [\ e
Define our Invariants - Safety Properties \A for all

NoLossOfCommittedMsgsInvariant ==
* 1t is valid for there to be no leader
\/ node_ldr = "-"
* in case of a leader, it must have all committed messages
\/ /\ node ldr # "-"

/\ \A msg value \in committed msgs :
msg value \in LogValuesOfNodeleader

LogValuesOfNodeleader ==
{ log item.val : log item \in node_data[node_ldr].log }

Back to Apache Kafka Replication...
Find invariant violations with TLC - The Model Checker

<< <<"StartNodes", "nl">>,
<<"StartNode", "n2">>,
<<"BecomeLeader"™, "nl">>,
<<"BecomeFollower™, "na">>,
<<"RecelveMessage">>,
<<"SendFetchRequest", "ni">>,
<<"SendFetchResponse", "ni">>,
<<"SendFetchRequest", "n2">>,
<<"ReceilveMessage">>,
<<"SendFetchResponse", "ni">>,
<<"SendFetchRequest", "n2">>,
<<"ShutdownMNode", "n2">>,
<" StartNode", "n2">>,
<<"ShutdownNode"™, "nl">>,
Z<"BecomeLeader", "ni">> =>

TLA+: It’s Weird and Wonderful...
But that’s ok

o Don’t be put off by strange syntax

O You may already know different languages of different
paradigms:
O A procedural language
o SQL (Set based)
O HTML, CSS, YAML (Declarative)
O Afunctional language

O You can be productive in 2-3 weeks

and... Testing Cafeterieres

) Randomized ‘]
System Test
0

Jack Vanlightly

, Integration
@vanlightly

Test

A multi-layered test
strategy for distributec

Formal

SySte MS. Verification

Beyond unit and integration testing

Property Based Testing

Test that certain properties (invariants) hold
while executing a program with different inputs.

Nicolas Rinaudo
A { Follow | w
@NicolasRinaudo

Studying TLA+ and property based tests, and
the more | look into it, the more they look
like two sides of the same coin.

5:33 AM - 10 Mar 2019

Randomized System Testing
Unleashing entropy, discovering the unexpected

Check that certain properties (invariants) hola
while:

O executing randomly chosen actions

O at random intervals (including
concurrently)

Start a node, stop a node, send a message, read a message, commit
an offset, rewind an offset, add a partition, start a consumer, stop a
consumer, add a second consumer group ...

Randomized System Testing
Unleashing entropy, discovering the unexpected

We can add more randomness..

o randomly injecting failure

O using random combinations of configurations

Randomized System Testing
Unleashing entropy, discovering the unexpected

Some failures:

Kill TCP connections

Add latency to TCP connections
Add packet loss to TCP connections
Kill nodes

Destroy data on disk

Corrupt data on disk

Network Partitions

Clock skew

Randomized System Testing
Unleashing entropy, discovering the unexpected

Apache Kafka configs and feature examples:
Replication Factor: 1, 3, 57

_og Compaction: enabled/disabled?
Producer acks: 0, 1 or all?

dempotent producer: Enabled, disabled?
Producer batch size? Max in-flight requests?
Consumer manual or auto-commit?

Min In-Sync Replicas?

Fsync period?

Transactions?

Randomized System Testing
Unleashing entropy, discovering the unexpected

.. allwhile recording actions, events, crash dumps, metrics
leading to test failures in order to:

O to understand root cause of failures

O and make test failures reproducible to create
unit/integration test cases (regression)

Randomized System Testing

If you though integration tests were slow...

Unit tests

Integration tests

Not just slow to
execute,
but slow to analyze

Randomized
System Tests

Randomized System Testing

Unleashing entropy, discovering the unexpected

Logs

Crash dumps
Metrics

Amazon S3

Test Agent

Test Agent

‘|\a
Jenkins

Test Agent

X Email

Case Study - RabbitMQ Quorum Queue Testing

Each test verifies both safety and liveness properties:

O One producer constantly trying to send messages with a monotonically
Increasing integer

o One consumer constantly trying to consume messages

O At random intervals, perform actions such as
O Starting, stopping nodes
O Stopping and starting the consumer
o Killing and restarting the consumer
o Injecting failures

O 5 minute grace period for stability to be established

o Check invariants:
O Message loss
O Message ordering (monotonically increasing numbers in messages)

Case Study -
RabbitMQ Quorum Queue Testing

Inject failures with Blockade
Collect docker logs
Monitor Invariants

Test
Log

One

OOk wh=

Actions

publisher, one consumer constantly
trying to publish and consume

Node 1 crashes

Node 3 network partitioned
Node 1 starts up and rejoins
Node 1-2 link congested
Network partition resolved
Node 2 catastrophic failure
(including data)

Node 3 failure

Node 2 starts up and rejoins
Node 1 network partitioned

. Node 3 starts up and rejoins
. Partition resolved

. Node 2 failure

. Node 2 starts up and rejoins
. Congestion on all links

. Node 2 network partitioned
. Partition resolved

. Congestion alleviated

or... Testing Hamburgers

e Jack Vanlightly

@vanlightly

Randomized
System Test

o MR s e o, el
PG, L

- ‘ ' . e

A multi-layered test © . Integration Test

M M - - ’ e -
strategy for distributed P AT,
systems. S UnitTest -

Y

YN Formal
Verification

Leslie Lamport’s Video Series:

https://lamport.azurewebsites.net/video/videos.html

Specifying Systems E-Book
https://lamport.azurewebsites.net/tla/book.html

Hillel Wayne, Practical TLA+
https://www.apress.com/gp/book/9781484238288

TLA+ subreddit
https.//www.reddit.com/r/tlaplus/ O

TLA+ Google Group
https://groups.google.com/forum/#!forum/tlaplus

Specifying
Systems

The TLA+ Language and Tools
for Hardware and Software Engineers

— el
= / <
Sl P %
o~ o

Leslie Lamport

Practical

TLA+

Apress

https://lamport.azurewebsites.net/video/videos.html
https://lamport.azurewebsites.net/tla/book.html
https://www.apress.com/gp/book/9781484238288
https://www.reddit.com/r/tlaplus/
https://groups.google.com/forum/#!forum/tlaplus

Random Testing and Fault Injection Tools

Jepsen https://github.com/jepsen-io/jepsen
https://jepsen.io/analyses

ToxiProxy https://github.com/Shopify/toxiproxy

Blockade https://github.com/worstcase/blockade

Chaos Monkey https://github.com/netflix/chaosmonkey

RabbitMQ 3.8 Randomized Test Code:
https://github.com/Vanlightly/ChaosTestingCode/blob/master/RabbitMgUdn/readme.md

Andrey Satarin - Testing Distributed Systems
https://asatarin.github.io/testing-distributed-systems/

, .

» :‘ ’ _JA:&.:&. v o
Randomized

System Test

Randomized

System Test
T VN .

k. 2

Integration
Test

-™ . '\

L

L

Integration Test

- Unit Test

T

Formal
Verification

Formal
Verification

