
Tackling Thread Safety in
Python
Piterpy 2024

About Me

Adarsh Divakaran

Co-founder and Lead consultant

Digievo Labs

Outline

● Threading
● Race Conditions
● Making Programs thread safe using Synchronization primitives

○ Lock
○ RLock
○ Semaphore
○ Event
○ Barrier
○ Condition

Threading

Python’s threading is a concurrency framework that allows us to spin up multiple
threads that can run concurrently, each executing pieces of code, improving the
efficiency and responsiveness of our application.

Why use threading?

● To improve application efficiency (concurrent execution, improve
responsiveness)

Sample - A Travel Booking Application

available_seats = 10

def book_seat():

global available_seats

if available_seats > 0:

 time.sleep(0.1) # Simulate processing

 available_seats -= 1

 print(f"Seat booked. Remaining seats: {available_seats}")

else:

 print("Sorry, no seats available.")

Sample - A Travel Booking Application

Problem: Bookings get completed sequentially - slower

Only one user can access the Python script simultaneously

Solution: Use multithreading

Multi-Threaded Booking App

concurrent_threads = 10

with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_threads) as executor:

 for i in range(15):

 executor.submit(book_seat)

Demo

Multi-Threaded Booking App

Debugging the issue:

● Concurrent read & write to shared data happens
● This can lead to race conditions

Race Conditions

A race condition occurs when the outcome of a program depends on the
sequence or timing of uncontrollable events like thread execution order.

● Race conditions occur when we use threading with shared mutable data.
● Non atomic operations can get context switched in between.

Race Conditions - Context Switching

Demo

Thread Safety

A program is said to be thread-safe if it can be run using multiple threads without
any unexpected side effects (or race conditions)

When should we worry about Thread safety

● We are using threading as our concurrency framework

Ref: Anthony Shaw - Unlocking the Parallel Universe: Subinterpreters and Free-Threading in Python 3.13 - Pycon US 2024

https://www.youtube.com/watch?v=Mp5wKOL4L2Q

When should we worry about Thread safety

Code contains shared mutable data & non-atomic operations

● Threads share memory location of parent process
● No problem if no data is shared
● No problem if code executed with threads operates on immutable data and

the operations are atomic

Making programs thread safe

Options:

● Don’t use threads (go with other concurrency frameworks)
● Don’t share mutable data across threads - Use thread local data
● Use Synchronization primitives.
● Make operations atomic (Python bytecode level)

Synchronization Primitives

● Lock
● RLock
● Semaphore
● Condition
● Event
● Barrier

Synchronization Primitives - Lock

A Lock is a synchronization primitive that allows only one thread to access a
resource at a time.

Practical Use-Case: Ensuring that only one thread can modify a shared variable at
a time to prevent race conditions.

Synchronization Primitives - Lock

lock = threading.Lock()

def book_seat():

 lock.acquire() # other threads get blocked (waiting for lock release) here

 try:

 # only one thread can access this critical section at a time

 pass

 finally:

 lock.release()

Synchronization Primitives - Lock

lock = threading.Lock()

def book_seat():

 # the critical section (enclosed in the `with block`) is protected by the lock

 with lock:

 # only one thread can access this critical section at a time

 pass

Demo

● Seat booking application
● 10 worker threads, 15 workers try to book at the same time
● A Lock object is used to mark the critical section of code

Synchronization Primitives - RLock

An RLock is a reentrant lock that allows the same thread to acquire the lock
multiple times without causing a deadlock.

Practical Use-Case: Allowing a thread to re-enter a critical section of code that it
already holds the lock for, such as in recursive functions.

Usage is same as that of Lock (acquire and release methods and context
manager).

Demo

● Example uses only 1 thread
● We have a function which acquires a lock and calls another function
● The called function also need to acquire the lock

Synchronization Primitives - Semaphore

A Semaphore is a synchronization primitive that controls access to a resource by
maintaining a counter, allowing a set number of threads to access the resource
simultaneously.

Practical Use-Case: Limiting the number of concurrent connections to a database
to prevent overload. (eg: connection pooling)

Synchronization Primitives - Semaphore

max_concurrent_bookings = 3

semaphore = threading.Semaphore(max_concurrent_bookings)

def book_travel_package():

 # any number of threads can enter up to here

 with semaphore:

 # only 3 threads can enter this code block simultaneously

 # other threads should wait

 ...

Demo

● 10 Workers trying to book a travel package
● We allow only 3 concurrent bookings using a semaphore
● All threads start at the same time, but only 3 threads can perform booking at a

time.

Synchronisation Primitives - Event

An Event is a synchronization primitive that allows one thread to signal one or
more other threads that a particular condition has been met.

Practical Use-Case: Notifying worker threads that new data is available for
processing.

Synchronization Primitives - Event

flight_landed = threading.Event()

def wait_for_passengers():

 # wait for the event to be set.

 flight_landed.wait()

 # code to be executed after the event happened

def flight_status_update():

 # perform some operations

 flight_landed.set()

Demo

● We have 2 threads
● 1 - To update flight status after a delay
● 2 - To collect passengers
● Both start at the same time
● They use an event object for communication

Synchronization Primitives - Barrier

A Barrier is a synchronization primitive that allows multiple threads to wait until all
threads have reached a certain point before any of them can proceed.

Practical Use-Case: Ensuring that all worker threads complete their individual
tasks before any thread proceeds to the next phase of a multi-phase computation.

Synchronization Primitives - Barrier

num_travelers = 4

barrier = threading.Barrier(num_travelers + 1) # +1 for the tour guide

def traveler():

 # code to get the traveller ready

 barrier.wait()

 # this line gets executed only when all travelers (total 5) are ready

def tour_guide():

 # independent operations

 barrier.wait()

 # code here will execute after 5 threads are waiting at the barrier

Demo

● Example where there are 4 travellers and a tour guide
● Guide is ready from the start
● Travellers take a random time to get ready
● Using a barrier, the tour starts at the time when all of them becomes ready

Synchronization Primitives - Condition

A Condition is a synchronization primitive that allows threads to wait for certain
conditions to be met before continuing execution.

Practical Use-Case: Pausing a thread until a specific condition is met, such as
waiting for a queue to be non-empty before consuming an item
(producer-consumer scenarios).

Synchronization Primitives - Condition

customer_available_condition = threading.Condition()

customer_queue = []

def add_customer_to_queue(customer_name):

 with customer_available_condition:

 customer_queue.append(customer_name)

 customer_available_condition.notify()

Synchronization Primitives - Condition

customer_available_condition = threading.Condition()

customer_queue = []

def serve_customers():

 while True:

 with customer_available_condition:

 # Wait for a customer to arrive

 while not customer_queue:

 customer_available_condition.wait() # Blocks here unless notified

 customer = customer_queue.pop(0) # Get and serve the customer

Synchronization Primitives - Condition

A condition object is always associated with some kind of lock; this can be passed
in or one will be created by default. It has the below methods:

● The wait() method releases the lock, and then blocks until another thread
awakens it by calling notify methods. Once awakened, wait() re-acquires
the lock and returns. It is also possible to specify a timeout.

● The notify() method wakes up one of the threads waiting for the condition
variable, if any are waiting. The notify_all() method wakes up all threads
waiting for the condition variable.

https://docs.python.org/3/library/threading.html#threading.Condition.notify

Demo

● We have 1 travel agent and 5 customers
● The travel agent serves customers one at a time
● Customers are stored in customer_queue
● The queue is shared across threads, so we use the condition object as a lock.
● The customers list stores the name of the customers and the delay of their

arrival.
● Customer gets served immediately when the travel agent is free.
● If the travel agent is busy, they should wait until the current customer is done

being served.

Condition - Difference from Other Primitives

A condition object is always associated with some kind of lock; this can be passed
in or one will be created by default. It has the below methods:

● A condition involves a lock + additional methods
● We can use the condition object as a lock

The lock will be used when we use the condition object as a context manager.

● Whenever the .wait() method is called, it releases the lock.

Condition vs Event

● Event objects are commonly used to handle one-time events.
● Conditions are used for producers-consumer scenarios.
● Conditions are suited when there is a continuous flow of events happening.

Summary

- Before moving to multithreading keep in mind that the code you are working
with might not be designed for thread safety - even library code.

- Before switching to multithreading, check for shared mutable data &
atomicity requirements.

- Add synchronization primitives to enforce thread-safety.

“When in doubt, use a mutex!” - CPython docs
(https://docs.python.org/3/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe)

https://docs.python.org/3/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe

Thank You

linkhq.co/adarsh

Get the talk materials & connect with me

http://linkhq.co/adarsh

