? PiterPy

Tackling Thread Safety in
Python

" DIGIEVO LABS

Adarsh Divakaran

Co-founder and Lead consultant

Digievo Labs

P PiterPy

@ PiterPy
Outline

e Threading
e Race Conditions

e Making Programs thread safe using
Lock

RLock

Semaphore

Event

Barrier

Condition

o 0O O O O O

~ DIGIEVO LABS

? PiterPy
Threading

Python'’s threading is a concurrency framework that allows us to spin up multiple
threads that can run concurrently, each executing pieces of code, improving the
efficiency and responsiveness of our application.

e To improve application efficiency (concurrent execution, improve
responsiveness)

Av DIGIEVO LABS

P PiterPy
Sample - A Travel Booking Application

available_seats = 10

def book_seat():
global available_seats
if available_seats > 0:
time.sleep(0.1) # Simulate processing
available_seats -= 1
print(f"Seat booked. Remaining seats: {available_seats}")
else:

print("Sorry, no seats available.")

~ DIGIEVO LABS

? PiterPy
Sample - A Travel Booking Application

Problem:
Only one user can access the Python script simultaneously

Solution:

Av DIGIEVO LABS

@ PiterPy
Multi-Threaded Booking App

concurrent_threads = 10
with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_threads) as executor:

for i in range(15):

executor.submit(book_seat)

~ DIGIEVO LABS

@ PiterPy

Demo

~ DIGIEVO LABS

? PiterPy
Multi-Threaded Booking App

Debugging the issue:

Av DIGIEVO LABS

@ PiterPy
Race Conditions

A race condition occurs when the outcome of a program depends on the
sequence or timing of uncontrollable events like thread execution order.

~ DIGIEVO LABS

@ PiterPy

Race Conditions - Context Switching

~ DIGIEVO LABS

@ PiterPy

Demo

~ DIGIEVO LABS

P PiterPy
Thread Safety

A program is said to be if it can be run using multiple threads without
any unexpected side effects (or race conditions)

" DIGIEVO LABS

? PiterPy
When should we worry about Thread safety

e \We are using threading as our concurrency framework

Parallel execution in Python

threads Parallel * small Small, IO-bound

coroutines Concurrent smallest Any tasks that don’t
require multiple
CPU cores

multiprocessing Parallel large Serialization Larger, CPU or IO-

Sub Parallel medium** Serialization or Pound tasks that

Interpreters Shared Memory ~réquire multiple
CPU cores

Ref: Anthony Shaw - Unlocking the Parallel Universe: Subinterpreters and Free-Threading in Python 3.13 - Pycon US 2024

~ DIGIEVO LABS

https://www.youtube.com/watch?v=Mp5wKOL4L2Q

P PiterPy
When should we worry about Thread safety

Code contains shared mutable data & non-atomic operations

e Threads share memory location of parent process
e No problem if no data is shared

e No problem if code executed with threads operates on immutable data and
the operations are atomic

~ DIGIEVO LABS

P PiterPy
Making programs thread safe

Options:
e Don't use threads (go with other concurrency frameworks)
e Don’t share mutable data across threads - Use thread local data
e Use Synchronization primitives.
e Make operations atomic (Python bytecode level)

~ DIGIEVO LABS

? PiterPy
Synchronization Primitives

Lock
RLock
Semaphore
Condition
Event
Barrier

~ DIGIEVO LABS

P PiterPy
Synchronization Primitives - Lock

A Lock is a synchronization primitive that allows only one thread to access a
resource at a time.

Ensuring that only one thread can modify a shared variable at
a time to prevent race conditions.

" DIGIEVO LABS

? PiterPy
Synchronization Primitives - Lock

lock = threading.Lock()

def book_seat():
lock.acquire() # other threads get blocked (waiting for lock release) here
try:
only one thread can access this critical section at a time
pass
finally:

lock.release()

~ DIGIEVO LABS

? PiterPy
Synchronization Primitives - Lock

lock = threading.Lock()

def book_seat():
the critical section (enclosed in the ‘with block') is protected by the lock
with lock:
only one thread can access this critical section at a time

pass

" DIGIEVO LABS

P PiterPy
Demo

e Seat booking application
e 10 worker threads, 15 workers try to book at the same time
e A Lock object is used to mark the critical section of code

~ DIGIEVO LABS

P PiterPy
Synchronization Primitives - RLock

An RLock is a reentrant lock that allows the same thread to acquire the lock
multiple times without causing a deadlock.

Allowing a thread to re-enter a critical section of code that it
already holds the lock for, such as in recursive functions.

Usage is same as that of Lock (acquire and release methods and context
manager).

~ DIGIEVO LABS

P PiterPy
Demo

e Example uses only 1 thread
e \We have a function which acquires a lock and calls another function
e The called function also need to acquire the lock

~ DIGIEVO LABS

P PiterPy
Synchronization Primitives - Semaphore

A Semaphore is a synchronization primitive that controls access to a resource by
maintaining a counter, allowing a set number of threads to access the resource
simultaneously.

Limiting the number of concurrent connections to a database
to prevent overload. (eg: connection pooling)

~ DIGIEVO LABS

P PiterPy
Synchronization Primitives - Semaphore

max_concurrent_bookings = 3

semaphore = threading.Semaphore(max_concurrent_bookings)
def book_travel_package():

any number of threads can enter up to here

with semaphore:

only 3 threads can enter this code block simultaneously

other threads should wait

~ DIGIEVO LABS

P PiterPy
Demo
e 10 Workers trying to book a travel package

e We allow only 3 concurrent bookings using a semaphore
e All threads start at the same time, but only 3 threads can perform booking at a

time.

~ DIGIEVO LABS

P PiterPy
Synchronisation Primitives - Event

An Event is a synchronization primitive that allows one thread to signal one or
more other threads that a particular condition has been met.

Notifying worker threads that new data is available for
processing.

" DIGIEVO LABS

? PiterPy
Synchronization Primitives - Event

flight_landed = threading.Event()

def wait_for_passengers():
wait for the event to be set.
flight_landed.wait ()

code to be executed after the event happened

def flight_status_update():
perform some operations

flight_landed.set()

~ DIGIEVO LABS

P PiterPy
Demo

We have 2 threads

1 - To update flight status after a delay

2 - To collect passengers

Both start at the same time

They use an event object for communication

~ DIGIEVO LABS

P PiterPy
Synchronization Primitives - Barrier

A Barrier is a synchronization primitive that allows multiple threads to wait until all
threads have reached a certain point before any of them can proceed.

Ensuring that all worker threads complete their individual
tasks before any thread proceeds to the next phase of a multi-phase computation.

~ DIGIEVO LABS

— —— . @ PiterPy
Synchronization Primitives - Barrier

num_travelers = 4

barrier = threading.Barrier(num_travelers + 1) # +1 for the tour guide

def traveler():
code to get the traveller ready
barrier.wait()

this line gets executed only when all travelers (total 5) are ready

def tour_guide():
independent operations
barrier.wait()

code here will execute after 5 threads are waiting at the barrier

" DIGIEVO LABS

? PiterPy
Demo

Example where there are 4 travellers and a tour guide

Guide is ready from the start

Travellers take a random time to get ready

Using a barrier, the tour starts at the time when all of them becomes ready

~ DIGIEVO LABS

P PiterPy
Synchronization Primitives - Condition

A Condition is a synchronization primitive that allows threads to wait for certain
conditions to be met before continuing execution.

Pausing a thread until a specific condition is met, such as
waiting for a queue to be non-empty before consuming an item
(producer-consumer scenarios).

~ DIGIEVO LABS

@ PiterPy
Synchronization Primitives - Condition

customer_available_condition = threading.Condition()

customer_queue = []

def add_customer_to_queue(Customer_name):
with customer_available_condition:
customer_queue.append(customer_name)

customer_available_condition.notify()

~ DIGIEVO LABS

@ PiterPy
Synchronization Primitives - Condition

customer_available_condition = threading.Condition()

customer_queue = []

def serve_customers():
while True:
with customer_available_condition:
Wait for a customer to arrive
while not customer_queue:

customer_available_condition.wait() # Blocks here unless notified

customer = customer_queue.pop(0) # Get and serve the customer

~ DIGIEVO LABS

? PiterPy
Synchronization Primitives - Condition

A condition object is always associated with some kind of lock; this can be passed
in or one will be created by default. It has the below methods:

e The method releases the lock, and then blocks until another thread
awakens it by calling notify methods. Once awakened, wait () re-acquires
the lock and returns. It is also possible to specify a timeout.

e The method wakes up one of the threads waiting for the condition
variable, if any are waiting. The method wakes up all threads
waiting for the condition variable.

~ DIGIEVO LABS

https://docs.python.org/3/library/threading.html#threading.Condition.notify

? PiterPy
Demo

We have 1 travel agent and 5 customers

The travel agent serves customers one at a time

Customers are stored in customer queue

The queue is shared across threads, so we use the condition object as a lock.
The customers list stores the name of the customers and the delay of their
arrival.

Customer gets served immediately when the travel agent is free.

e |[f the travel agent is busy, they should wait until the current customer is done
being served.

~ DIGIEVO LABS

P PiterPy
Condition - Difference from Other Primitives

A condition object is always associated with some kind of lock; this can be passed
in or one will be created by default. It has the below methods:

e A condition involves a
e \We can use the condition object as a lock

e \Whenever the method is called, it releases the lock.

~ DIGIEVO LABS

P PiterPy
Condition vs Event

e Event objects are commonly used to handle events.
e Conditions are used for producers-consumer scenarios.
e Conditions are suited when there is a of events happening.

~ DIGIEVO LABS

? PiterPy

Summary

- Before moving to multithreading keep in mind that the code you are working
with might not be designed for thread safety - even library code.
- Before switching to multithreading, check for shared mutable data &

atomicity requirements.
- Add to enforce thread-safety.

“When in doubt, use a mutex!” - CPython docs

)

(https://docs.python.org/3/fag/library.html#what-kinds-of-global-value-mutation-are-thread-safe

~ DIGIEVO LABS

https://docs.python.org/3/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe

? PiterPy
Thank You

Get the talk materials & connect with me

linkhg.co/adarsh

Av DIGIEVO LABS

http://linkhq.co/adarsh

