DOTNEXT

Discovering .NET 5

Raffaele Rialdil - Senior Software Architect

@raffaeler
raffaeler@vevy.com

Professional

Who am I? Lved

- Raffaele Rialdi, Senior Software Architect in Vevy Europe — Italy
- @raffaeler also known as "Raf"
- Consultant in many industries
- Manufacturing, racing, healthcare, financial, ...
- Speaker and Trainer around the globe (development and security)
- ltaly, Romania, Bulgaria, Russia (Moscow, St Petersburg and Novosibirsk), USA, ...
- And proud member of the great Microsoft MVP family since 2003

Discount code for my co-authored book

Learn C# Programming
Covers C#8 on .NET Core

CH

Programming
« Amazon code: 25CSHARPBK

https://www.amazon.com/gp/mpc/AEL3ILD2QGUS8K

A guide to building a solid foundation in C# language for writing
efficient programs

« Packt code: 25CSHARPBK

https://www.packtpub.com/ (ebook)

Codes exipire on December 15

e

Marius Bancila, Raffaele Rialdi, and Ankit Sharma Marius Bancila, Raffaele Ria

Foreword by Dino Esposito (Digital Strategist, Youbiquitous.net;

Foreword by Dino Esposito (Digital Strategist, Youbiquitous.net)

https://www.amazon.com/gp/mpc/AEL3ILD2QGU8K
https://www.packtpub.com/

Agenda

How is .NET application development changing?
(Not just the obvious) .NET 5 features
-Performance improvements at various levels

-Publishing improvements in size & bootstrap time

A new .NET era has come

- C# 9: we can count ~18 new features in C#9
- Web development improvements

- ASP.NET Core 5 is now the fastest framework!

- OpenAPI, Swagger, OData, gRPC, ...

- Windows development is back

- .NET / Container size has shrinked

- Development+diagnostics is better than ever

Pointe

Function

Slson

annotations

BitArray

Pub

Nullability

lishing

MEE)EN i

INnterop
_ WINRT Rl;luﬁt
images ool

MSBuild

container

ClickOnce

ARM64

C#9 Don'tjust stop at the main features!

- There are new types
- New nint and nuint platform-dependent integers

- System.Half, 16 bit floating-point /
- Lambda discards Func<int, int, int> func = (_, _) => @;
- Avoiding local captures var s = x.Select(static n => n.ToString());
- Target typed new List<string> strings = new();
- Attributes on local functions N\
- SkipLocalslnitAttribute [SkipLocalsInit]
. ?ublic unsate void DoNotInitializeMemory()

Span<int> storage = stackalloc int[10000];

C# 9 Covariant returns

abstract class Storage

interface IArchive { } {

class FileArchive : IArchive { } public abstract string Name { get; }
public abstract IArchive CreateArchive();

public abstract IEnumerable<IArchive> ReadArchives();
} 2)

The overriding method can declare a most derived return type

class MemoryArchive : IArchive { }

class FileStorage : Storage
{
public override string Name => "File storage";
public override FileArchive CreateArchive() => new FileArchive();
public override IEnumerable<FileArchive> ReadArchives() => new List<FileArchive>() { /* ... */ };

} *

NET future is "Core" and starts now with .NET 5

- The Framework.NET will not evolve, but supported for long
- Newest C# features are not available in the .NET Framework

« .NET is the new name for .NET Core

- NetStandard is still useful

- Are you authoring public/nuget libraries?
* Use the lowest netstandard version you can

- Are you publishing apps?
- Just use a simple .NET5 (not LTS) / .NET Core 3.1 (LTS) library

*In .NET 6 the mono/Xamarin/.NET runtimes will be merged

\

Supported SDKs

TFMs and Windows SDK

10.0.17763.0
10.0.18362.0

10.0.19041.0
o _/

«.NET can now call any headless APl in Windows

* From .NET Core 3.1 Minimum OS Version

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.1</TargetFramework> Windows SDK version
<SupportedOSPlatform>windows7</SupportedOSPlatform>
</PropertyGroup>
<ItemGroup>
<PackageReference Includez"Microsoft.Windows.SDK.Contracts" Version="10.0.19041.1"/ />
</ItemGroup>

* From .NET 5 .NET + Windows SDK versions
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0-windows10.0.19041.0</TargetFramework>
<SupportedOSPlatform>windows7</SupportedOSPlatform>
</PropertyGroup>

Minimum OS Version

Using the Windows SDK from .NET 5

Using the Windows Ul controls from .NET 5

- WinUI3 allows .NET 5 apps
to use Ul controls

- Available in WPF, Winform, UWP

- Notable features:

SwapChainPanel

Multi windows

ARMG64

RenderTargetBitmap

- WebView?2 is a separate control
- available on Winform/WPF as well!

@

@

@

@

WinUI3 Preview 3 templates in Visual Studio

Windows Runtime Component (Winllin LWPR)

A project for creating a managed Windows Runtime Component (winmd) for Universal Windows
Platform (UWP) apps, based on the Windows Ul Library (WinU1).

C# Windows WP Winul

Class Library (Winll in Desktop)

A project for creating a managed class library (dIl} for Desktop apps based on the Windows LI
Library (WinUI).

C# Windows Desktop WinlJl

Blank App, Packaged (WinUl in Desktop)

A project for creating a Desktop app based on the Windows Ul Library (WinUl) along with a MSIX
package for side-loading or distribution via the Microsoft Store,

C# Windows Desktop WinlJl

Class Library (WinUl in UWP)

A project for creating a managed class library (dIl) for Universal Windows Platform (UWP) apps
based on the Windows Ul Library (WinUI),

C# Windows WP Winul

Blank App (WinUl in WP

A project for creating a Universal Windows Platform (UWP) app based on the Windows Ul Library
(WinlI).

C# Windows WP WinUl

FAQ: Will WinUI3 work cross-platform?

- |t depends from your votes!
- Kevin Gallo clearly said that it only depends on the feedback they get

- If you care, please vote here:
» https://github.com/microsoft/microsoft-ui-xaml/issues/2024

https://github.com/microsoft/microsoft-ui-xaml/issues/2024

WIinUI3 Preview 3
WebView?2

The magics behind accessing
Windows SDKs

The CsWInRT nuget package

* A code generator to Consume and Produce WinRT components
- Other code generators that Microsoft is working on: C++, Rust, Python

- Generates the C# code (projection) that makes the native
component appear as it was .NET code

- Widely used in Microsoft (WinUl is just an example)

- Note: replaces the old projection generator that was part of .NET

C#9 Function Pointers (used by CsWinRT)

Calling convention The CH# method below
N o
delegate* unmanaged[Cdecl]<int, byte*, int, int> _export = &0nNativeMessage;
in out €— Func<> like signature

[UnmanagedCallersOnly(CallConvs = new[] { typeof(CallConvCdecl) })]
public static int OnNativeMessage(int id, byte* message, int length)

{
Console.WritelLine(Encoding.UTF8.GetString(message, length));

return 0;

- Allow exporting "functions" to the native world

- Remove the need of creating a delegate instance

- Reduce the cost of runtime calling

- Transition the GC to cooperative mode automatically
- The pointers point straight to the JITted native code.

System.Text.Json

System.Text.Json Tips

Immutable record and structs

Select the appropriate ctor

Don't serialize default values

Allow using private setter

Extra data goes here

Allow circular references

public record Person(string FirstName, string LastName);

public class Person {
[JsonConstructor]
public Person(string firstName, string lastName) { ... }
public Person(string fullName) { ...}

[JsonIgnore(Condition = JsonIgnoreCondition.WhenWritingDefault)]
public string LastName { get; init; }

[JsonInclude]
public int FullNameLen { get; private set; }

[JsonExtensionData]
[JsonInclude]
public IDictionary<string, object> Extra { get; private set; }

new System.Text.Json.JsonSerializerOptions() {
ReferenceHandler = ReferenceHandler.Preserve,

Iy

Serialization Benchmark
—_—

- Depth: 3 levels (about 250 objects)
- Circular references (Parent property)

« camelCase

.NET 5 - Serialization

| Method |
| JsonNet |
| TextJson |
| Method |

| JsonNet |

Mean | Error | StdDev |

----------- R it BRnChe

484.3 us | 9.62 us | 20.71 us |

221.7 us | 4.42 us | 6.48 us |

.NET Framework 4.8 - Serialization

Mean | Error | StdDev |

-----------]

648.8 us | 12.95 us | 31.78 us |

568.2 us | 11.01 us | 17.14 us |

| TextJson |

=0)

46.8750
20.7520

41.0156
17.5781

DotNet

~ Powerful .NET library for benchmarking

Gen 1 | Gen 2 | Allocated |
--------] ety
8.7891 | - | 195.73 KB |
0.2441 | - | 85.51 KB |

2 | Allocated |

Gen 1 | Gen

| 171.8 KB
| 75.09 KB

Deserialization Benchmark

- Depth: 3 levels (about 250 objects)
- Circular references (Parent property)
- camelCase

_:a DotNet

. . . ~ Powerful .NET library for benchmarking
.NET 5 - Deserialization
| Method | Mean | Error | StdDev | Gen @ | Gen 1 | Gen 2 | Allocated |
|--------- EEEEEEEEEEE JEEEEEEEEE JEEEEEEEEE JEEEEREEEE JEEEEEEEE JREEEEE JEEEEREEEEE |
| JsonNet | 1,288.1 us | 25.38 us | 37.21 us | 121.0938 | 52.7344 | - | 682.76 KB |
| TextJson | 417.1 us | 8.31 us | 13.17 us | 17.5781 | 2.4414 | - 72.7 KB |
.NET Framework 4.8 - Deserialization
| Method | Mean | Error | StdDev | Gen @ | Gen 1 | Gen 2 | Allocated |
|--------- EEEEEEEEEEE JEEEEEEEEE JEEEEELEEE JEEEEEEEEE JEEEEEEEE JEEEEED JEEEEREEEEE !
| JsonNet | 1,469.3 us | 27.12 us | 43.79 us | 80.0781 | 29.2969 | - | 390.32 KB |

| TextJson | 821.1 us | 16.24 us | 13.56 us | 11.7188 | - - | 49.42 KB |

Prepare for publishing

Publishing options

- Self-contained: remove the need to deploy the runtime
<Runtimeldentifiers>linux-x64</Runtimeldentifiers>
<SelfContained>true</SelfContained>

- SingleFile: creates a single file containing the App and its dependencies
<PublishSingleFile>true</PublishSingleFile>

« Trimming: remove the need for IL for types not used from the App
<PublishTrimmed>true</PublishTrimmed>

- AOT/R2R: pre-generate the native assembler to speed up App bootstrap
<PublishReadyToRun>true</PublishReadyToRun>

» CLI command:

dotnet publish -r linux-x64 --self-contained true
/p:PublishTrimmed=true /p:PublishReadToRun=true

/p:PublishSingleFile=true /p:IncludeNativelLibrariesForSelfExtract=true

Trimming more code!

- .NET Core 3 can only trim entire types
- .NET 5 has an optional feature trimming just unused members

<PublishTrimmed>true</PublishTrimmed> /p:PublishTrimmed=true /p:TrimMode=Link
<TrimMode>1ink</TrimMode>

- Removes R2R images as well unless PublishReadyToRun is true

- It is an experimental feature, but very promising
- Not all the system libraries have been annotated yet
- This is why it does not play well with WPF and Winform
- Implemented to address WebAssembly/Blazor needs
- App manual testing is mandatory
- Unit tests can fool the results

Trimming: adding or removing "Features”

- This is how Blazor trims away parts of the BCL for good reasons
- You can do the same with your own libraries
- .NET 5 Features: sets of functionalities

when

DebuggerSupport Code such as debugger visualizers false
EnableUnsafeUTF7Encoding Unsafe UTF-7 encoding false
EnableUnsafeBinaryFormatterSerialization Binary formatter false
EventSourceSupport EventSource and related types false
InvariantGlobalization Invariant globalization conversions true
UseSystemResourceKeys Localized resources for system assemblies true

HttpActivityPropagationSupport Distributed tracing over System.Net.Http false

A new «Superhost» is scheduled for .NET 6

- Statically link the CLR, Jitter (if needed) and native libraries
» Cross-platform friendly

- Goals:
- Total removal of the Intermediate Language IL (obfuscation purposes)
- Smallest possible binary file
- Fastest possible startup time

Size comparison in publishing

AnyCPU Constzlifned SiFr;lgeIe E(Z)I'RI' Trim
o
o
o
o o
o o [
o o [o
o o o o
o o
o o

* WPF apps need additional work to avoid trimming vital types

Trim
Link

Console

153.

64.

153.

58.

58.

18.

10.

24 .

16.

9

7

M

M

M

WebApp

4.4 M

88.8 M

4.

82.

82.

42.

30.

48.

36.

4

M

M

WPF *

159.0

148.0

159.0

142.0

142.0

81.2

72.0

87.3

78.1

WPF *

Browser

1.

149.

143.

143.

82.

73.

88.

79.

2

%)

M

M

Better diagnostics

our app
- dotnet-trace can now start a Process l
dotnet-trace collect --providers Microsoft-Windows-DotNETRuntime:4:4 -- Browsing.exe

- Saves a trace file on disk that can be analyzed with PerfView

- Analyze Linux dumps on Windows
- Windbg or 'dotnet dump analyze

 Capture ELF dumps on macOS

CH#
Programming

Packt> |

Questions?

Thank you!

@raffaeler - raffaeler@vevy.com

Amazon code: 25CSHARPBK

https://www.amazon.com/gp/mpc/AEL3ILD2QGUS8K

r writing
5
B E
et =
i
i

Packt code: 25CSHARPBK
https://www.packtpub.com/ (ebook)

mailto:raffaeler@vevy.com
https://www.amazon.com/gp/mpc/AEL3ILD2QGU8K
https://www.packtpub.com/

