
@berndruecker

Lost in transaction?

Strategies to manage consistency
in distributed systems

@berndruecker

Order

Order
Line Item

Customer

Customer

Address

orderId
customerId
chargeId
…

customerId
…

productId
price
…

Charge

Charge

Order

chargeId
amount
paymentProvider
transactionId
…

Aggregate

Entity

Value Object

Reference by identity
@berndruecker

Order

Order
Line Item

orderId
customerId
chargeId
…

productId
price
… Order

Charge

Charge

chargeId
amount
paymentProvider
transactionId
… Create

Charge

Mark
order as

paid

All or
nothing+

@berndruecker

A
C
I
D

Atomicity
Consistency
Isolation
Durability

@berndruecker

Aggregates = Consistency Boundaries

Order

Order
Line Item

orderId
customerId
chargeId
…

productId
price
… Order

Charge

Charge

chargeId
amount
paymentProvider
transactionId
…

You can do ACID
within here

Or here

But not a joined
ACID transaction!

@berndruecker

Aggregates = Consistency Boundaries

Order

Order
Line Item

orderId
customerId
chargeId
…

productId
price
… Order

Charge

Charge

chargeId
amount
paymentProvider
transactionId
…

Own DB / autonomous technology decisions
API-driven
Scalability
…

@berndruecker

Aggregates = Consistency Boundaries

Order

Order
Line Item

orderId
customerId
chargeId
…

productId
price
… Order

Charge

Charge

chargeId
amount
paymentProvider
transactionId
…

Own DB / autonomous technology decisions
API-driven
Scalability
…

@berndruecker

Boundaries need to be designed carefully

Charge

chargeId
amount
paymentProvider
transactionId
…

Order

Order
Line Item

orderId
customerId
chargeId
…

productId
price
…Order

@berndruecker

But no implicit constraints!

Order

Order
Line Item

orderId
customerId
chargeId
…

productId
price
… Order

Charge

Charge

chargeId
amount
paymentProvider
transactionId
…

Joined DB
transaciton

@berndruecker

There is two-phase commit (XA)!!

TX
Coordinator

Resource
Managers

Prepare
Phase

Commit
Phase

@berndruecker

Pat Helland

“

Distributed Systems Guru
Worked at Amazon,
Microsoft & Salesforce

@berndruecker

Pat Helland

Grown-Ups Don’t Use
Distributed Transactions

“

Distributed Systems Guru
Worked at Amazon,
Microsoft & Salesforce

@berndruecker

Starbucks does not use two phase commit
https://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

Photo by John Ingle

@berndruecker

https://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html
http://www.sheppard.af.mil/News/Photos/igphoto/2001871578/

Eric Brewer
Atomicity
Consistency
Isolation
Durability

http://pld.cs.luc.edu/courses/353/spr11/notes/brewer_keynote.pdf @berndruecker

http://pld.cs.luc.edu/courses/353/spr11/notes/brewer_keynote.pdf

That means

Do A

Do B

Temporarily
inconsistent

Eventually
consistent
again

t

Consistent

Local
ACID

Local
ACID

1 aggregate
1 (micro-)service
1 program
1 resource

Violates „I“
of ACID

@berndruecker

Yo
u

m
ig

ht
kn

ow
th

is
fr

om
:

Do A

Do B

Temporarily
inconsistent

Eventually
consistent
again

t

Consistent

Photo by Gerhard51, available under Creative Commons CC0 1.0 license.

@berndruecker

https://de.wikipedia.org/wiki/Datei:Postkutsche_W%C3%BCrttemberg_vor_1914.jpg
https://creativecommons.org/publicdomain/zero/1.0/

„Building on Quicksand“ Paper

A
C
I
D
2.0Pat Helland

@berndruecker

Associative
Commutative
Idempotent
Distributed
2.0

(a + b) + c = a + (b + c)

a + b = b + a

f(x) = f(f(x))

„Building on Quicksand“ Paper

Pat Helland

@berndruecker

Distributed
@berndruecker

Distributed systems
@berndruecker

Network problems

Credit
Card

Payment
charge

@berndruecker

Strategy: retry

Credit
Card

Payment

Charge Credit Card
cardNumber

amount

Charge Credit Card
cardNumber

amount
transactionId

Not idempotent

Idempotent

has to be idempotent

charge

@berndruecker

Photo by pixabay, available under Creative Commons CC0 1.0 license.

@berndruecker

https://pixabay.com/de/zucchini-gem%C3%BCse-lebensmittel-green-700384/
https://creativecommons.org/publicdomain/zero/1.0/

Requirement: Idempotency of services!

Photo by pixabay, available under Creative Commons CC0 1.0 license.

@berndruecker

https://pixabay.com/de/zucchini-gem%C3%BCse-lebensmittel-green-700384/
https://creativecommons.org/publicdomain/zero/1.0/

Requirement: Idempotency of services!

Photo by Chr.Späth, available under Public Domain.

@berndruecker

https://commons.wikimedia.org/wiki/File:Pasta_2006_6.jpg
https://en.wikipedia.org/wiki/Public_domain

Distributed systems
@berndruecker

It is impossible to
differentiate certain

failure scenarios:

Independant of
communication style!

Service
Provider

Client

@berndruecker

Strategy: Cleanup

Credit
Card

Payment
charge

Make sure it is
not charged!

Cancel charge
cardNumber

amount
transactionId

Raise
payment failed

@berndruecker

Distributed systems
@berndruecker

Some communication challenges
require state.

@berndruecker

Strategy: Stateful retry

Credit
Card

Payment
charge

@berndruecker

Strategy: Stateful retry

Credit
Card

Payment
charge

Make sure it is
not charged!

@berndruecker

Warning:
Contains Opinion

Berlin, Germany

bernd.ruecker@camunda.com
@berndruecker

Bernd Ruecker
Co-founder and
Technologist of
Camunda

Payment

Stateful retry

Credit
CardREST

@berndruecker

Stateful retry & cleanup

Credit
Card

Payment
REST

Cancel

charge

@berndruecker

Architecture

Infrastructure

Application

Domain

Workflow
Engine

@berndruecker

Architecture

Infrastructure

Application

Domain

Workflow
Engine

@berndruecker

Lightweight
OSS workflow
engine

Live hacking

https://github.com/flowing/flowing-retail/tree/master/rest

@berndruecker

https://github.com/flowing/flowing-retail/tree/master/rest

Embedded Engine Example (Java)

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

@berndruecker

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

A relatively common pattern

Service
(e.g. Go)

Rabbit

RDMS

1. Receive

4. Send additional events

2. Business Logic

3. Send
response? ACK

@berndruecker

„Can this handle 15k
requests per second?“

@berndruecker

„Yes.“
@berndruecker

@berndruecker

@berndruecker

Compensation – the classical example

Saga
book
hotel

book
car

book
flight

cancel
hotel

cancel
car

1. 2. 3.

5.6.

In case of failure
trigger compensations

book
trip

2 alterntive approaches: choreography & orchestration

@berndruecker

Event-driven choreography

Hotel

Flight

Car

Trip

Trip
booked

Flight
booked

Trip
requested

Hotel
booked

Car
booked

Request
trip

@berndruecker

Event-driven choreography

Hotel

Flight

Car

Trip

Trip
failed

Trip
requested

Hotel
booked

Car
booked

Request
trip

Flight
failed

Car
canceled

Hotel
canceled

Perform undo
(cancel car booking)

Perform undo
(cancel hotel)

@berndruecker

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html

If your transaction involves 2 to 4 steps,
choreography might be a very good fit.

However, this approach can rapidly become confusing
if you keep adding extra steps in your transaction
as it is difficult to track which services listen to
which events. Moreover, it also might add a cyclic
dependency between services as they have to
subscribe to one another’s events.

Denis Rosa
Couchbase

https://blog.couchbase.com/saga-pattern-implement-business-transactions-using-microservices-part/

@berndruecker

https://twitter.com/deniswsrosa
https://blog.couchbase.com/saga-pattern-implement-business-transactions-using-microservices-part/

Implementing changes in the process

Hotel

Flight

Car

Trip

Trip
failed

Trip
requested

Hotel
booked

Car
booked

Request
trip

Flight
failed

Car
canceled

Hotel
canceled

We have a new basic agreement
with the car rental agency and
can cancel for free within 1 hour

– do that first!

@berndruecker

Implementing changes in the process

Hotel

Flight

Car

Trip

Trip
failed

Trip
requested

Hotel
booked

Car
booked

Request
trip

Flight
failed

Car
canceled

Hotel
canceled

You have to adjust all services and redeploy at the same time!

We have a new basic agreement
with the car rental agency and
can cancel for free within 1 hour

– do that first!

@berndruecker

What we wanted

Photo by Lijian Zhang, available under Creative Commons SA 2.0 License and Pedobear19 / CC BY-SA 4.0

@berndruecker

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Moshing_BMTH_RAL_2013.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Orchestration

Hotel

Flight

Car

Trip

Trip
booked

Request
trip

Book
hotel

Hotel
booked

Car
booked

Flight
booked

Book
car

Book
flight

@berndruecker

Orchestration

Hotel

Flight

Car

Trip

Trip
booked

Request
trip

Book
hotel

Hotel
booked

Car
booked

Flight
booked

Book
car

Book
flight

We have a new basic agreement
with the car rental agency and
can cancel for free within 1 hour

– do that first!

You have to adjust one service and redeploy only this one!

@berndruecker

Describe orchestration with BPMN

Trip

Trip
booked

Request
trip

@berndruecker

The workflow is domain logic as part of the service

Trip

@berndruecker

The workflow is domain logic as part of the service

Trip

Payment

Payment could be one
step in the Trip Saga

@berndruecker

Caitie McCaffrey | @caitie

@berndruecker

Graphical models?

@berndruecker

Clemens Vasters
Architect at Microsoft

http://vasters.com/archive/Sagas.html

@berndruecker

https://twitter.com/clemensv
http://vasters.com/archive/Sagas.html

Clemens Vasters
Architect at Microsoft

http://vasters.com/archive/Sagas.html

@berndruecker

https://twitter.com/clemensv
http://vasters.com/archive/Sagas.html

Clemens Vasters
Architect at Microsoft

http://vasters.com/archive/Sagas.html

@berndruecker

https://twitter.com/clemensv
http://vasters.com/archive/Sagas.html

BPMN
Business Process

Model and Notation

ISO Standard

@berndruecker

Living documentation for long-running behaviour

@berndruecker

Visual HTML reports for test cases

@berndruecker

BizDevOps

@berndruecker

Fancy a DSL? Just do it!

https://github.com/berndruecker/flowing-trip-booking-saga

The visual get
auto-generated…

@berndruecker

https://github.com/berndruecker/flowing-trip-booking-saga

Thoughts on the state machine | workflow engine market

@berndruecker

Thoughts on the state machine | workflow engine market

OSS Workflow or
Orchestration Engines

Stack Vendors,
Pure Play BPMS

Low Code Platforms

Homegrown frameworks
to scratch an itch

Integration Frameworks

Cloud Offerings

Uber, Netflix, AirBnb, ING, … AWS Step Functions,
Azure Durable Functions, …

Camunda, Zeebe, jBPM,
Activiti, Mistral, …

PEGA, IBM, SAG, …

Apache Airflow,
Spring Data Flow, …

Apache Camel,
Balerina, …

Data
Pipelines

@berndruecker

Does it support stateful operations?

Does it support the necessary flow logic?

Does it support BizDevOps?

Does it scale?

@berndruecker

My personal pro-tip for a shortlist ;-)

OSS Workflow or
Orchestration Engines

Stack Vendors,
Pure Play BPMS

Low Code Platforms

Homegrown frameworks
to scratch an itch

Integration Frameworks

Cloud Offerings

Data
Pipelines

Camunda & Zeebe

@berndruecker

Recap

• Aggregates = Consistency boundaries
• Grown ups don‘t use distributed transactions

but eventual consistency
• Idempotency is super important
• Some consistency challenges require state
• Stateful retry & cleanup
• Saga / Compensation

@berndruecker

Thank you!

@berndruecker

mail@berndruecker.io
@berndruecker

https://berndruecker.io

https://medium.com/berndruecker

https://github.com/berndruecker

https://www.infoq.com/articles/events-
workflow-automation

Contact:

Slides:

Blog:

Code:

https://www.infoworld.com/article/3254777/
application-development/
3-common-pitfalls-of-microservices-
integrationand-how-to-avoid-them.html

https://thenewstack.io/5-workflow-automation-
use-cases-you-might-not-have-considered/

mailto:mail@berndruecker.io
https://berndruecker.io/
https://medium.com/berndruecker
https://github.com/berndruecker
https://www.infoq.com/articles/events-workflow-automation
https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

