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● Example is real; simplified for slide
– Many more wrapper layers removed
– Shown “as if” aggressive inlining already

● I've debugged dozens of slight variations

● Apparently I'm not alone:

if (method.hasCode() != true) 
  return false;
code = method.getCode();
...setup;
code.execute();  // Throws NPE rarely!!! 
return true;

A Short Debugging Tale

Learning from mistakes -- 
A Comprehensive Study on Real World Concurrency Bug Characteristics

http://opera.cs.uiuc.edu/paper/asplos122-lu.pdf
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● Formally:
– Two threads accessing the same memory
– At least one is writing
– And no language-level ordering

● Informally:
– Broken attempt to use more CPUs
– (but can happen with 1 CPU)

● Generally because 1 CPU is too slow
– End of frequency scaling    :-(
– Multi-core, big server, etc

What IS a Data Race?
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● Two threads

Timeline of a Data Race

r1 = _code
if( !r1 ) ...

r1 = _code
call exec(r1)

T1

flush_old_cache

_code = null

T2
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● Two threads

● Accessing same memory

● At least one is writing
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● Two threads

● Accessing same memory

● At least one is writing

● No language-level 
ordering

r1 = _code
if( !r1 ) ...

r1 = _code
call exec(r1)

T1

flush_old_cache

_code = null

T2

Timeline of a Data Race
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● OK if:
– Write before 1st Read OR
– Write after 2nd Read

● Broken if in-between

● Pot-Luck based on OS
thread schedule

● Crashes rarely in testing

● More context switches
under heavy load

● Crash routine in production

r1 = _code
if( !r1 ) ...

r1 = _code
call exec(r1)

T1

flush_old_cache

_code = null

T2

Timeline of a Data Race
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● When & Why can loads and stores move?

● Compiler moves for scheduling

● Hardware moves the effect for timing
– Covering cache-miss costs

● Allowed unless explicitly denied
– Via lock/synchronized or volatile

● Requires TWO or more threads… (obvious)

● Requires ordering on ALL threads
– Not just on the writer...

What IS a Data Race?
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● Writing 2 fields

● Can T2 see stale _data?

● Yes!_data = stuff

_init = true

T1

r1 = _init
if( !r1 ) ...

r2 = _data

T2

Reordering Memory Ops



 @2020 Rocket Realtime School of 
Programming and Performance

rocketrealtime.com

● Writing 2 fields

● Can T2 see stale _data?

● Yes!

● Compiler can reorder
– Standard faire for -O

● Java: make _init volatile

● C/C++: use ‘atomic’

_data = stuff

_init = true

T1

r2 = _data

r1 = _init
if( !r1 ) ...

T2

Reordering Memory Ops
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● Writing 2 fields
● Can T2 see stale _data?
● Yes!
● Hardware can reorder
● Load _init misses cache
● Predict r1==true
● Speculatively load _data 

early, hits cache
● _init comes back true
● Keep speculative _data

_data = stuff

_init = true

T1

r1 = _init
if( !r1 ) ... // predict
r2 = _data

...r1 true

...so keep r2

T2

Reordering Memory Ops
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● Writing 2 fields

● Can T2 see stale _datum?

● No!

● Need store-side ordering

● Need load-side ordering

● Included in Java volatile

_data = stuff
  membar       
_init = true

T1

r1 = _init
if( !r1 ) ...
  membar       
r2 = _data

T2

Reordering Memory Ops
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● Writing 2 fields

● Can T2 see stale _data?

● Yes!

● Missing load-ordering

● Read of _init misses

● Predict branch

● Fetch _data early

● Confirm good branch

_data = stuff
  membar       
_init = true

T1

r1 = _init
if( !r1 ) ... // predict
r2 = _data

...r1 true

...so keep r2

T2

Reordering Memory Ops
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● Writing 2 fields

● Can T2 see stale _data?

● Yes!

● Missing store ordering

● Write of _data misses

● Write of _init hits cache

● T2 reads _init

● T2 reads stale _data 

_data = stuff

_init = true

...stuff actually

...visible

T1

r1 = _init
if( !r1 ) ...
  membar       
r2 = _data

T2

Reordering Memory Ops
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● My experiences only*

● Double-read with write in the middle:

● ...and it's usually a null write

● Two writes with a read in the middle:

● Double Checked Locking:

if( _p != null ) 
  ... _p._fld...

_size *= 2;
_array=new[_size];

..._array[_size-1]...

_p = null;

if( _global == null )
  synchronized(x) 
    if( _global == null )
      _global = new ...;

Common Data Races

*Learning From Mistakes – ASPLOS 2008
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● Initializing global singleton

● Can T2 see stale _fld?

● Yes!

● Misplaced store-ordering

● Unlock puts barrier AFTER both 
writes
– Not between

● Fix: make _global volatile

r1 = new ...
r1._fld = stuff
...write misses
_global = r1

...write of _fld

...happens here

  membar       
unlock

T1

r1 = _global
if( !r1 ) ... 
r2 = r1._fld

T2

Double Checked Locking
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● if( _p != null ) {..._p._fld...}

● Compiler likes to CSE both loads together
– No bug if CSE'd together
– C: Crashes in debug build, not product build
– Java: Crashes before high-opt JIT kicks in

● Crashes when context-switch between reads

● i.e., just as heavy load hits system

● If you survive startup, might last a long time

● Bug can persist for years
– Plenty of personal experience here...

More On Double-Read
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● Common caching case: rare writer, many readers

● Using a HashMap unsafely and catching NPE
– But not catching rarer AIOOBE
– Bug bit both a customer AND in-house engineer

● Idea: HashMap w/single writer, many readers
– Thinking: No locking needed since 1 writer
– Readers sometimes see ½ of 'put'
– Throw NPE occasionally; Fix: catch NPE & retry

Getting Clever w/HashMap
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● Writer can be mid-resize, reader hashes to larger table
– But does lookup on smaller table
– Throws AIOOBE – not caught, program crash

● Reader calls size(), size() calls resize, and…
– Reader is now writing (resizing) the table
– Other Reader throws AIOOBE – not caught, program crash
– Or list corrupted; cyclic..

● touching threads hang forever spinning on the cycle
● Transaction times out, retries
● Threadpool launches another thread…. that also hangs
● Slowly all cores burned on threads spinning in table
● Server grinds to a halt

Getting Clever w/HashMap
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● Visual Inspection
– Very slow, fairly accurate, “State of the Practice”

● Printing
– Changes timing, can hide bugs, “HeisenBugs”
– I use a better “printing” solution

● Static Analysis Tools
– STILL not very good, decades later
– FindBugs best easiest answer

Debugging Techniques
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● Easy to get started with

● Works on core files; works after the fact
– Just obtaining the code is often a problem

● Very slow per LOC

● Sometimes can make a more directed search
– e.g., Stack trace points out where somebody failed
– Play mental Sherlock Holmes w/self

● Requires Memory Model expert, domain expert

● Does Not Scale

Visual Inspection
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● Biggest Flaw: Not Knowing The Players

● Maintainer cannot name shared variables
– Or which threads can access them
– Or when they are allowed to touch

● Sometimes suffices to Make Access Explicit
– Large Flashy Comments on shared variables
– At least the Players become obvious

● Can also look for common failures

Visual Inspection



 @2020 Rocket Realtime School of 
Programming and Performance

rocketrealtime.com

● Avoiding Double-Read:
– Often requires changing accessor patterns
– No more “if( isReady() ) ... get()” pattern
– Return flag & value in 1 shot, cache in a local variable:

● No more accessors around fields

● Every field load & store is part of the algorithm

● And must be explicit to be inspected

Visual Inspection

tmp = get();
if( tmp != null ) ...tmp._fld...
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● 2nd Biggest Flaw: forgetting “The Cycle”

● Concurrent code does: {start, do, end}

● Carefully inspect: two threads both doing
 {start, do, end}

● But code in a cycle!
– ...start, do, end, stuff, start, do, end, stuff...

● Inspect: two threads both doing {end, stuff, start}

● Inspect: {start, do, end} vs {end, stuff, start}
– (chasing each others' tail)

Visual Inspection
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● Endlessly Repeat Cycle:
  r1=_code; 
  if(!r1) _code=...;
  r1=_code;
  call exec(r1);
  flush;
  _code=null;

● On multiple threads

● Must check all interleavings

r1 = _code
if( !r1 ) ...

r1 = _code
call exec(r1)

r1 = _code
if( !r1 )
  _code = ...

r1 = _code
call exec(r1)

r1 = _code
if( !r1 ) ...

r1 = _code
call exec(r1)

T1

if( !r1 )
  _code = ...

flush_cache 
_code = null 

flush_cache
_code = null

T2

The Cycle

!
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● Printing / Logging / Events
– “Make noise” at each read/write of shared variable
– Inspect trace after crash
– Serialized results...
– ...but I/O blocks; changes timing, hides data-race bugs
– Also OS can buffer per-thread; WYSI is not WYG

● Well known “HeisenBug” symptom:
– Never crashes when printing
– Or under the debugger
– Or on my desktop

Printing
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● I use this hack for HeisenBugs:

● Write “event tokens” (ints) to per-thread ring-buffer
– Per-thread buffer: No contention to write
– Tokens: no complex String creation, 

no object creation, no cache-misses
– Ring buffer: much less overhead & no blocking

● Very less likely to hide bug

● Works Distributed!  
– Debugged H2O’s clustering comms using this...

● Hard to read the results, so...

Cheaper “Printing”
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● Per-Thread Ordering w/TimeStamp
– Slap a System.nanoTime in the per-thread event buffer

● Post-process the crash
– Sort all ring-buffers by nanoTime
– Print a time-line just before the crash
– AND after the crash
– 99% chance the “guilty thread” stands out

● Rather heavy-weight technique
– Need to know where to target it

Printing Cheap “Printing”
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● Not Ready for Prime Time
– Most tools simply don't scale
– 10x slowdowns, high false positive rates
– Or require PhD to use

● Recommend: FindBugs
– Scales to production use
– Simple pattern-matching

● But finds only the common bugs
● The “common cold” is called “common” for a reason

– Definitely limited in scope

Tools
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● Protecting against “unexpected” Data Race
– Lock unlocked Code & Collections
– Supposed to be no contention
– No-contention lock cost is low, so…
– If no data race, very low cost

● Detecting “unexpected” Data Race:
– Throw exception if racing in “unexpected” code
– Requires extra word, ½ thin-lock cost, try-lock
– Catches BOTH reader and writer 

● ... at moment of race!

Defensive Locking
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● Formal proofs?
– Still not ready for prime-time
– Although hardware designers make it work for them

● Statistical
– I get X fails/month; what happens that often?

● I did a bunch of home-grown tools:
– NISB: catch real races when they happen, 20xslower
– Also Detect when common collections are used racily
– Not widely available, more proof-of-concept

Other Techniques
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Testing Concurrent Code

● Sequential
– Deterministic
– 100% code coverage
– Repeatable, Reliable
– Same results when:

● Changing hardware
● Changing memory
● Changing load

● Concurrent
– Non-deterministic
– <<1% state coverage
– Heisen-Bug
– Different when results:

● Changing hardware
● Changing memory
● Changing load
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● New failure modes:
– Deadlock, livelock, missed signals, notifies
– Synchronization and atomicity failures
– Data races
– Performance failures

● Failures in sequential code are deterministic:
– Same input, same failure

● Failures in concurrent code are probabilistic:
– Might require hugely unlucky timing to crash

Testing Concurrent Code
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Testing Concurrent Code

● Split out concurrency & application logic
– Test app logic as normal single-threaded
– Test concurrency without app complexity
– Focus concurrency testing

● Requires a different QA plan for concurrency
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QA Plan

● The goal of QA is not to “find all the bugs”
– Because this is impossible

● Goal of QA is really to increase confidence

● QA approaches include:
– Education, training, careful design
– Code review
– Static analysis (tools)
– Testing

● Unit, integration, load, performance tests
● Statistical analysis of crashes
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QA Plan

● “Absence of evidence is not evidence of absence”
– Testing can only find errors, not correctness
– Even more true with rare probabilistic failures

● Testing, code review, and static analysis are all 
subject to diminishing returns
– Tend to find different types of problems
– So combine them!  

Lame but true… worth doing it all
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Code Reviews

● Expensive and Effective
– Can spot bugs that occur rarely in practice
– Can spot bugs that won't happen on specific 

hardware (e.g. desktop vs mobile)
– Often improves general code and comment quality

● Might require a culture shift!!!

● And one that’s worth it
– Education all around, buy-in to the solution
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Static Analysis

● FindBugs…
– Can check rules/patterns

● e.g. “Hold a lock consistently when accessing a field”
● Highly automatable
● Plan to deal with false positives 

● Annotate concurrency design!
– Very helpful for both humans and automatic tools
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Unit Tests

● Basic safety & liveness
– If I do one X, can I do one Y?

● Basic concurrency:
– If I do 10 X’s in parallel, do 10 Y’s also work?
– Basic deadlock & concurrency testing

● Load testing:
– If I do 1e6 X’s in parallel, then 1e6 Y’s, 

performance is “about” 1e6 times doing it once?
– Tests rare timing-related events
– Some livelock testing
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Unit Test Framework Issues

● This blocks the usual test harnesses:

● Exceptions in Threads ignored:

void test() { 
  BoundedBlockingQueue buf = new BoundedBlockingQueue(1); 
  buf.put(“abc”); 
  buf.put(“def”);
  assertEquals(“abc”, buf.take());
  assertEquals(“def”, buf.take()); 
}

Queue full, so blocks

void test() { 
  UnboundedQueue buf = new UnboundedQueue(); 
  buf.put(“abc”); 
  Thread t = new Thread() {() → assertEquals(“oops”, buf.take());}
  t.join();
}

Exception thrown,
thread dies

Thread joins,
test completes normal
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White-Box Tests

● Controlled interleaving:
– Force T1 to advance, then T2, then back to T1
– Can force weird interleavings
– While moving at “debugging-speed”

● Requires a new testing support harness
– Internal clock for “ticks”
– Block threads until “tick”, advance until “tick”
– Hooks in code under test

● Can test e.g. blocking and narrow races
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White Box Testing

● Harness maintains global clock
– Only advance when all threads blocked
– Can wait-till-clock-value
– Plays well with debuggers (unlike sleep())

void T1() {
  buf.put(“abc”); 
  assertEqual(0, getTick()); // blocks until T2 is wait-for-1 
  buf.put(“def”); 
  assertEqual(1, getTick()); // blocks until T2 exits 
}

void T2() { 
  waitForTick(1); // blocks until T1 is getTick()==0 
  assertEquals(“abc”,buf.get()); 
  assertEquals(“def”,buf.get()); 
}
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Load Testing

● Easy to say “do X 1e6 times”
– Reasonable for Big Data / Batch processing

● Highly unrealistic for irregular compute!
– Need a mix of request types and timing
– You don’t get {nothing, a million page hits, nothing}

● Service Requests:
– curl 1e6 mixed URLs to web server

– But don’t fire off #N until #N-1 completes
– So web server only services 1 request at a time
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Load Testing

● Service Requests:
– Not firing off request #N until #N-1 completes
– Unrealistic single-threaded latency reported

● Must fire new requests with e.g. an exponential 
distribution, and independent of results

● Load tool must be parallel & concurrent as well!

● See Gil Tene’s work with the Jitter Meter

request
response

request
response

request

response

request

response

work

work

work

work
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Load Testing

● “Lab” environment must match “production”
– Full-speed network, full-speed DB, full-size gear
– Or else, “lab performance testing” is unrealistic
– Seen this conflict in many large companies

● Can’t (typically) test system at full load from 
dev desk
– So all kinds of weird behaviors only show up later

● Worth spending the hardware $$$ to get 
smoother lab → production workflow
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Statistical Testing

● See failure in testing, hard to repeat
– Never fails on desktop, or with more debug logic

● Same solution as hardware guys:
– Statistics!
– Repeat-until and count failure rate

● Get a machine dedicated to the problem

● Run it hard, under heavy load, over and over
– Days maybe

● See what the failure rate is...
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Statistical Testing

● Now you have a “guaranteed fail” box
– Just takes, e.g. a day, or large X runs to make sure

● Slowly add debug info, logging, printouts
– Fail rate doesn’t change?

● You’re probably not “too close” to the bug

– Fail rate drops off?
● You’re tweaking important timing, near the bug

● Basically, you can now zero in on the bug
– But it just takes X runs to make sure

● Where X might be big
Time→ R
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n
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Statistical Testing

● Once you have the bug fix in hand
– Box can be used to test “enough”

● And likely its more than one bug, interlocked
– So you’ll go back to the same setup a few times

● General rule: 

● And this works for software, same as hardware

Probabilistic events require many 
runs and get tracked with statistics

Time→ R
u
n
s
 
t
o
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Distributed App Testing

● Much of parallel advice applies
– Replace “data race in shared memory” 

with “network race in shared cluster”
– Replace “how many threads” 

with “how many nodes”?
● And 5 is a good start

● Can test on vboxs or even processes on 1 real 
hardware node
– Network costs really low so…

● MUST also test with real network latencies
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Distributed App Testing

● Need real latencies to see real interleavings

● Need real loads same as parallel case

● Also: inject network failures
– Dropped / dup’ed UDP packets
– Broken TCP connections
– Retry logic will get used, needs testing also

● Load testing, statistical testing all apply
– Used the “cheaper printing” to help debug H2O 



56@2020 Rocket Realtime School of 
Programming and Performance

rocketrealtime.com

Agenda

● What is a Data Race?

● Common Data Races

● Debugging Techniques & Tools

● QA & Testing

● Wrap Up



 @2020 Rocket Realtime School of 
Programming and Performance

rocketrealtime.com

● Anti-patterns:
– Double-Checked Locking
– Or double-read w/rare null writer

● Hidden by accessors

– Multiple calls to a thread-safe collection
are not thread-safe between calls:

– Two racing writers compute 2 tmp’s

– Each thinks it has the only copy, both are updated
– And one of the updates is lost

Writing Data Races

if( (tmp=cache.get(Key)) == null )
    cache.put(Key,(tmp=compute_value()));
...tmp...

if( hasFoo() ) 
  getFoo().doIt();

if( _global == null )
  synchronized(x) 
    if( _global == null )
      _global = new ...;
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● Often hidden by Good Programming Practice

● Already solving a Large, Complex Problem

● Using abstraction, accessors
– Giving meaning to memory access
– In context of Large, Complex Problem

● Need more speed

● So introduce Concurrency, Threads

Writing Data Races
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● End up adding Concurrency to 
Large Complex Problem

● Fail to recognize Concurrency it's own
(subtle) Complex Problem

● Needs its own kinds of wrappers, access control
– Design API around concurrent access!
– It's not a bolt-on after-the-fact kind of feature

● Interviews w/Data-Race Victims:
– Don't know which thread can touch what or when
– Surprised by the interleaving that triggers the bug

The Pitfall
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● Best answer: don't write concurrency bugs!

● Use the 'immutable' object pattern

● Use private data

● Use well-tested java.util.concurrency.*

Don't Go There...

But When You Must...
● Admit to self: Here Be Dragons

● Think Before You Write, and ...

● Document, Document, Document!
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