
Debugging Data Races

Dr. Cliff Click
rocket.realtime.school@gmail.com

cliffc@acm.org
cliffc.org/blog

mailto:rocket.realtime.school@gmail.com

2@2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Agenda

● What is a Data Race?

● Common Data Races

● Debugging Techniques & Tools

● QA & Testing

● Wrap Up

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Example is real; simplified for slide
– Many more wrapper layers removed
– Shown “as if” aggressive inlining already

● I've debugged dozens of slight variations

● Apparently I'm not alone:

if (method.hasCode() != true)
 return false;
code = method.getCode();
...setup;
code.execute(); // Throws NPE rarely!!!
return true;

A Short Debugging Tale

Learning from mistakes --
A Comprehensive Study on Real World Concurrency Bug Characteristics

http://opera.cs.uiuc.edu/paper/asplos122-lu.pdf

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Formally:
– Two threads accessing the same memory
– At least one is writing
– And no language-level ordering

● Informally:
– Broken attempt to use more CPUs
– (but can happen with 1 CPU)

● Generally because 1 CPU is too slow
– End of frequency scaling :-(
– Multi-core, big server, etc

What IS a Data Race?

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Two threads

Timeline of a Data Race

r1 = _code
if(!r1) ...

r1 = _code
call exec(r1)

T1

flush_old_cache

_code = null

T2

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Two threads

● Accessing same memory
r1 = _code
if(!r1) ...

r1 = _code
call exec(r1)

T1

flush_old_cache

_code = null

T2

Timeline of a Data Race

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Two threads

● Accessing same memory

● At least one is writing
r1 = _code
if(!r1) ...

r1 = _code
call exec(r1)

T1

flush_old_cache

_code = null

T2

Timeline of a Data Race

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Two threads

● Accessing same memory

● At least one is writing

● No language-level
ordering

r1 = _code
if(!r1) ...

r1 = _code
call exec(r1)

T1

flush_old_cache

_code = null

T2

Timeline of a Data Race

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● OK if:
– Write before 1st Read OR
– Write after 2nd Read

● Broken if in-between

● Pot-Luck based on OS
thread schedule

● Crashes rarely in testing

● More context switches
under heavy load

● Crash routine in production

r1 = _code
if(!r1) ...

r1 = _code
call exec(r1)

T1

flush_old_cache

_code = null

T2

Timeline of a Data Race

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● When & Why can loads and stores move?

● Compiler moves for scheduling

● Hardware moves the effect for timing
– Covering cache-miss costs

● Allowed unless explicitly denied
– Via lock/synchronized or volatile

● Requires TWO or more threads… (obvious)

● Requires ordering on ALL threads
– Not just on the writer...

What IS a Data Race?

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Writing 2 fields

● Can T2 see stale _data?

● Yes!_data = stuff

_init = true

T1

r1 = _init
if(!r1) ...

r2 = _data

T2

Reordering Memory Ops

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Writing 2 fields

● Can T2 see stale _data?

● Yes!

● Compiler can reorder
– Standard faire for -O

● Java: make _init volatile

● C/C++: use ‘atomic’

_data = stuff

_init = true

T1

r2 = _data

r1 = _init
if(!r1) ...

T2

Reordering Memory Ops

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Writing 2 fields
● Can T2 see stale _data?
● Yes!
● Hardware can reorder
● Load _init misses cache
● Predict r1==true
● Speculatively load _data

early, hits cache
● _init comes back true
● Keep speculative _data

_data = stuff

_init = true

T1

r1 = _init
if(!r1) ... // predict
r2 = _data

...r1 true

...so keep r2

T2

Reordering Memory Ops

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Writing 2 fields

● Can T2 see stale _datum?

● No!

● Need store-side ordering

● Need load-side ordering

● Included in Java volatile

_data = stuff
 membar
_init = true

T1

r1 = _init
if(!r1) ...
 membar
r2 = _data

T2

Reordering Memory Ops

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Writing 2 fields

● Can T2 see stale _data?

● Yes!

● Missing load-ordering

● Read of _init misses

● Predict branch

● Fetch _data early

● Confirm good branch

_data = stuff
 membar
_init = true

T1

r1 = _init
if(!r1) ... // predict
r2 = _data

...r1 true

...so keep r2

T2

Reordering Memory Ops

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Writing 2 fields

● Can T2 see stale _data?

● Yes!

● Missing store ordering

● Write of _data misses

● Write of _init hits cache

● T2 reads _init

● T2 reads stale _data

_data = stuff

_init = true

...stuff actually

...visible

T1

r1 = _init
if(!r1) ...
 membar
r2 = _data

T2

Reordering Memory Ops

17@2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Agenda

● What is a Data Race?

● Common Data Races

● Debugging Techniques & Tools

● QA & Testing

● Wrap Up

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● My experiences only*

● Double-read with write in the middle:

● ...and it's usually a null write

● Two writes with a read in the middle:

● Double Checked Locking:

if(_p != null)
 ... _p._fld...

_size *= 2;
_array=new[_size];

..._array[_size-1]...

_p = null;

if(_global == null)
 synchronized(x)
 if(_global == null)
 _global = new ...;

Common Data Races

*Learning From Mistakes – ASPLOS 2008

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Initializing global singleton

● Can T2 see stale _fld?

● Yes!

● Misplaced store-ordering

● Unlock puts barrier AFTER both
writes
– Not between

● Fix: make _global volatile

r1 = new ...
r1._fld = stuff
...write misses
_global = r1

...write of _fld

...happens here

 membar
unlock

T1

r1 = _global
if(!r1) ...
r2 = r1._fld

T2

Double Checked Locking

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● if(_p != null) {..._p._fld...}

● Compiler likes to CSE both loads together
– No bug if CSE'd together
– C: Crashes in debug build, not product build
– Java: Crashes before high-opt JIT kicks in

● Crashes when context-switch between reads

● i.e., just as heavy load hits system

● If you survive startup, might last a long time

● Bug can persist for years
– Plenty of personal experience here...

More On Double-Read

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Common caching case: rare writer, many readers

● Using a HashMap unsafely and catching NPE
– But not catching rarer AIOOBE
– Bug bit both a customer AND in-house engineer

● Idea: HashMap w/single writer, many readers
– Thinking: No locking needed since 1 writer
– Readers sometimes see ½ of 'put'
– Throw NPE occasionally; Fix: catch NPE & retry

Getting Clever w/HashMap

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Writer can be mid-resize, reader hashes to larger table
– But does lookup on smaller table
– Throws AIOOBE – not caught, program crash

● Reader calls size(), size() calls resize, and…
– Reader is now writing (resizing) the table
– Other Reader throws AIOOBE – not caught, program crash
– Or list corrupted; cyclic..

● touching threads hang forever spinning on the cycle
● Transaction times out, retries
● Threadpool launches another thread…. that also hangs
● Slowly all cores burned on threads spinning in table
● Server grinds to a halt

Getting Clever w/HashMap

23@2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Agenda

● What is a Data Race?

● Common Data Races

● Debugging Techniques & Tools

● QA & Testing

● Wrap Up

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Visual Inspection
– Very slow, fairly accurate, “State of the Practice”

● Printing
– Changes timing, can hide bugs, “HeisenBugs”
– I use a better “printing” solution

● Static Analysis Tools
– STILL not very good, decades later
– FindBugs best easiest answer

Debugging Techniques

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Easy to get started with

● Works on core files; works after the fact
– Just obtaining the code is often a problem

● Very slow per LOC

● Sometimes can make a more directed search
– e.g., Stack trace points out where somebody failed
– Play mental Sherlock Holmes w/self

● Requires Memory Model expert, domain expert

● Does Not Scale

Visual Inspection

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Biggest Flaw: Not Knowing The Players

● Maintainer cannot name shared variables
– Or which threads can access them
– Or when they are allowed to touch

● Sometimes suffices to Make Access Explicit
– Large Flashy Comments on shared variables
– At least the Players become obvious

● Can also look for common failures

Visual Inspection

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Avoiding Double-Read:
– Often requires changing accessor patterns
– No more “if(isReady()) ... get()” pattern
– Return flag & value in 1 shot, cache in a local variable:

● No more accessors around fields

● Every field load & store is part of the algorithm

● And must be explicit to be inspected

Visual Inspection

tmp = get();
if(tmp != null) ...tmp._fld...

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● 2nd Biggest Flaw: forgetting “The Cycle”

● Concurrent code does: {start, do, end}

● Carefully inspect: two threads both doing
 {start, do, end}

● But code in a cycle!
– ...start, do, end, stuff, start, do, end, stuff...

● Inspect: two threads both doing {end, stuff, start}

● Inspect: {start, do, end} vs {end, stuff, start}
– (chasing each others' tail)

Visual Inspection

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Endlessly Repeat Cycle:
 r1=_code;
 if(!r1) _code=...;
 r1=_code;
 call exec(r1);
 flush;
 _code=null;

● On multiple threads

● Must check all interleavings

r1 = _code
if(!r1) ...

r1 = _code
call exec(r1)

r1 = _code
if(!r1)
 _code = ...

r1 = _code
call exec(r1)

r1 = _code
if(!r1) ...

r1 = _code
call exec(r1)

T1

if(!r1)
 _code = ...

flush_cache
_code = null

flush_cache
_code = null

T2

The Cycle

!

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Printing / Logging / Events
– “Make noise” at each read/write of shared variable
– Inspect trace after crash
– Serialized results...
– ...but I/O blocks; changes timing, hides data-race bugs
– Also OS can buffer per-thread; WYSI is not WYG

● Well known “HeisenBug” symptom:
– Never crashes when printing
– Or under the debugger
– Or on my desktop

Printing

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● I use this hack for HeisenBugs:

● Write “event tokens” (ints) to per-thread ring-buffer
– Per-thread buffer: No contention to write
– Tokens: no complex String creation,

no object creation, no cache-misses
– Ring buffer: much less overhead & no blocking

● Very less likely to hide bug

● Works Distributed!
– Debugged H2O’s clustering comms using this...

● Hard to read the results, so...

Cheaper “Printing”

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Per-Thread Ordering w/TimeStamp
– Slap a System.nanoTime in the per-thread event buffer

● Post-process the crash
– Sort all ring-buffers by nanoTime
– Print a time-line just before the crash
– AND after the crash
– 99% chance the “guilty thread” stands out

● Rather heavy-weight technique
– Need to know where to target it

Printing Cheap “Printing”

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Not Ready for Prime Time
– Most tools simply don't scale
– 10x slowdowns, high false positive rates
– Or require PhD to use

● Recommend: FindBugs
– Scales to production use
– Simple pattern-matching

● But finds only the common bugs
● The “common cold” is called “common” for a reason

– Definitely limited in scope

Tools

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Protecting against “unexpected” Data Race
– Lock unlocked Code & Collections
– Supposed to be no contention
– No-contention lock cost is low, so…
– If no data race, very low cost

● Detecting “unexpected” Data Race:
– Throw exception if racing in “unexpected” code
– Requires extra word, ½ thin-lock cost, try-lock
– Catches BOTH reader and writer

● ... at moment of race!

Defensive Locking

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Formal proofs?
– Still not ready for prime-time
– Although hardware designers make it work for them

● Statistical
– I get X fails/month; what happens that often?

● I did a bunch of home-grown tools:
– NISB: catch real races when they happen, 20xslower
– Also Detect when common collections are used racily
– Not widely available, more proof-of-concept

Other Techniques

36@2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Agenda

● What is a Data Race?

● Common Data Races

● Debugging Techniques & Tools

● QA & Testing

● Wrap Up

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Testing Concurrent Code

● Sequential
– Deterministic
– 100% code coverage
– Repeatable, Reliable
– Same results when:

● Changing hardware
● Changing memory
● Changing load

● Concurrent
– Non-deterministic
– <<1% state coverage
– Heisen-Bug
– Different when results:

● Changing hardware
● Changing memory
● Changing load

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● New failure modes:
– Deadlock, livelock, missed signals, notifies
– Synchronization and atomicity failures
– Data races
– Performance failures

● Failures in sequential code are deterministic:
– Same input, same failure

● Failures in concurrent code are probabilistic:
– Might require hugely unlucky timing to crash

Testing Concurrent Code

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Testing Concurrent Code

● Split out concurrency & application logic
– Test app logic as normal single-threaded
– Test concurrency without app complexity
– Focus concurrency testing

● Requires a different QA plan for concurrency

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

QA Plan

● The goal of QA is not to “find all the bugs”
– Because this is impossible

● Goal of QA is really to increase confidence

● QA approaches include:
– Education, training, careful design
– Code review
– Static analysis (tools)
– Testing

● Unit, integration, load, performance tests
● Statistical analysis of crashes

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

QA Plan

● “Absence of evidence is not evidence of absence”
– Testing can only find errors, not correctness
– Even more true with rare probabilistic failures

● Testing, code review, and static analysis are all
subject to diminishing returns
– Tend to find different types of problems
– So combine them!

Lame but true… worth doing it all

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Code Reviews

● Expensive and Effective
– Can spot bugs that occur rarely in practice
– Can spot bugs that won't happen on specific

hardware (e.g. desktop vs mobile)
– Often improves general code and comment quality

● Might require a culture shift!!!

● And one that’s worth it
– Education all around, buy-in to the solution

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Static Analysis

● FindBugs…
– Can check rules/patterns

● e.g. “Hold a lock consistently when accessing a field”
● Highly automatable
● Plan to deal with false positives

● Annotate concurrency design!
– Very helpful for both humans and automatic tools

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Unit Tests

● Basic safety & liveness
– If I do one X, can I do one Y?

● Basic concurrency:
– If I do 10 X’s in parallel, do 10 Y’s also work?
– Basic deadlock & concurrency testing

● Load testing:
– If I do 1e6 X’s in parallel, then 1e6 Y’s,

performance is “about” 1e6 times doing it once?
– Tests rare timing-related events
– Some livelock testing

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Unit Test Framework Issues

● This blocks the usual test harnesses:

● Exceptions in Threads ignored:

void test() {
 BoundedBlockingQueue buf = new BoundedBlockingQueue(1);
 buf.put(“abc”);
 buf.put(“def”);
 assertEquals(“abc”, buf.take());
 assertEquals(“def”, buf.take());
}

Queue full, so blocks

void test() {
 UnboundedQueue buf = new UnboundedQueue();
 buf.put(“abc”);
 Thread t = new Thread() {() → assertEquals(“oops”, buf.take());}
 t.join();
}

Exception thrown,
thread dies

Thread joins,
test completes normal

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

White-Box Tests

● Controlled interleaving:
– Force T1 to advance, then T2, then back to T1
– Can force weird interleavings
– While moving at “debugging-speed”

● Requires a new testing support harness
– Internal clock for “ticks”
– Block threads until “tick”, advance until “tick”
– Hooks in code under test

● Can test e.g. blocking and narrow races

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

White Box Testing

● Harness maintains global clock
– Only advance when all threads blocked
– Can wait-till-clock-value
– Plays well with debuggers (unlike sleep())

void T1() {
 buf.put(“abc”);
 assertEqual(0, getTick()); // blocks until T2 is wait-for-1
 buf.put(“def”);
 assertEqual(1, getTick()); // blocks until T2 exits
}

void T2() {
 waitForTick(1); // blocks until T1 is getTick()==0
 assertEquals(“abc”,buf.get());
 assertEquals(“def”,buf.get());
}

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Load Testing

● Easy to say “do X 1e6 times”
– Reasonable for Big Data / Batch processing

● Highly unrealistic for irregular compute!
– Need a mix of request types and timing
– You don’t get {nothing, a million page hits, nothing}

● Service Requests:
– curl 1e6 mixed URLs to web server

– But don’t fire off #N until #N-1 completes
– So web server only services 1 request at a time

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Load Testing

● Service Requests:
– Not firing off request #N until #N-1 completes
– Unrealistic single-threaded latency reported

● Must fire new requests with e.g. an exponential
distribution, and independent of results

● Load tool must be parallel & concurrent as well!

● See Gil Tene’s work with the Jitter Meter

request
response

request
response

request

response

request

response

work

work

work

work

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Load Testing

● “Lab” environment must match “production”
– Full-speed network, full-speed DB, full-size gear
– Or else, “lab performance testing” is unrealistic
– Seen this conflict in many large companies

● Can’t (typically) test system at full load from
dev desk
– So all kinds of weird behaviors only show up later

● Worth spending the hardware $$$ to get
smoother lab → production workflow

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Statistical Testing

● See failure in testing, hard to repeat
– Never fails on desktop, or with more debug logic

● Same solution as hardware guys:
– Statistics!
– Repeat-until and count failure rate

● Get a machine dedicated to the problem

● Run it hard, under heavy load, over and over
– Days maybe

● See what the failure rate is...

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Statistical Testing

● Now you have a “guaranteed fail” box
– Just takes, e.g. a day, or large X runs to make sure

● Slowly add debug info, logging, printouts
– Fail rate doesn’t change?

● You’re probably not “too close” to the bug

– Fail rate drops off?
● You’re tweaking important timing, near the bug

● Basically, you can now zero in on the bug
– But it just takes X runs to make sure

● Where X might be big
Time→ R

u
n
s

t
o

f
a
i
l
→

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Statistical Testing

● Once you have the bug fix in hand
– Box can be used to test “enough”

● And likely its more than one bug, interlocked
– So you’ll go back to the same setup a few times

● General rule:

● And this works for software, same as hardware

Probabilistic events require many
runs and get tracked with statistics

Time→ R
u
n
s

t
o

f
a
i
l
→

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Distributed App Testing

● Much of parallel advice applies
– Replace “data race in shared memory”

with “network race in shared cluster”
– Replace “how many threads”

with “how many nodes”?
● And 5 is a good start

● Can test on vboxs or even processes on 1 real
hardware node
– Network costs really low so…

● MUST also test with real network latencies

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Distributed App Testing

● Need real latencies to see real interleavings

● Need real loads same as parallel case

● Also: inject network failures
– Dropped / dup’ed UDP packets
– Broken TCP connections
– Retry logic will get used, needs testing also

● Load testing, statistical testing all apply
– Used the “cheaper printing” to help debug H2O

56@2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Agenda

● What is a Data Race?

● Common Data Races

● Debugging Techniques & Tools

● QA & Testing

● Wrap Up

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Anti-patterns:
– Double-Checked Locking
– Or double-read w/rare null writer

● Hidden by accessors

– Multiple calls to a thread-safe collection
are not thread-safe between calls:

– Two racing writers compute 2 tmp’s

– Each thinks it has the only copy, both are updated
– And one of the updates is lost

Writing Data Races

if((tmp=cache.get(Key)) == null)
 cache.put(Key,(tmp=compute_value()));
...tmp...

if(hasFoo())
 getFoo().doIt();

if(_global == null)
 synchronized(x)
 if(_global == null)
 _global = new ...;

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Often hidden by Good Programming Practice

● Already solving a Large, Complex Problem

● Using abstraction, accessors
– Giving meaning to memory access
– In context of Large, Complex Problem

● Need more speed

● So introduce Concurrency, Threads

Writing Data Races

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● End up adding Concurrency to
Large Complex Problem

● Fail to recognize Concurrency it's own
(subtle) Complex Problem

● Needs its own kinds of wrappers, access control
– Design API around concurrent access!
– It's not a bolt-on after-the-fact kind of feature

● Interviews w/Data-Race Victims:
– Don't know which thread can touch what or when
– Surprised by the interleaving that triggers the bug

The Pitfall

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

● Best answer: don't write concurrency bugs!

● Use the 'immutable' object pattern

● Use private data

● Use well-tested java.util.concurrency.*

Don't Go There...

But When You Must...
● Admit to self: Here Be Dragons

● Think Before You Write, and ...

● Document, Document, Document!

 @2020 Rocket Realtime School of
Programming and Performance

rocketrealtime.com

Q&A

Dr. Cliff Click
rocket.realtime.school@gmail.com

cliffc@acm.org
cliffc.org/blog

Debugging Data Races

mailto:rocket.realtime.school@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

