
GC Optimizations You Never Knew
Existed

Igor Braga
Jon Oommen

JPoint 2021

Important Disclaimers
• THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

• WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED.

• ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR
INFRASTRUCTURE DIFFERENCES.

• ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

• IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

• IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT
OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

• NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:
• CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS

OR THEIR SUPPLIERS AND/OR LICENSORS

2

Outline

1. Introduction

2. Garbage Collection Algorithms

3. Dynamic Breadth First Scan Ordering

4. Double Map Arraylets

5. Off-heap Management

6. Summary

3

A Little bit About Igor

1. Software Developer at IBM

2. Masters University of Waterloo

3. Interested in Systems, Compilers, ML/AI

4. Tennis Addict

4

A Little bit About Jon

1. VM/GC Developer at IBM

2. Studied Systems Engineering at Carleton
University

3. Most Interested in ML/AI, Blockchain
Technology, and of course, GC

4. Fun Fact: 2nd youngest of 11 children

5

The place to get OpenJDK builds

For both

https://adoptopenjdk.net

OpenJDK
+

OpenJ9

OpenJDK
+

Hotspot
or

6

https://adoptopenjdk.net/releases.html?variant=openjdk9-openj9

Eclipse OpenJ9
Created Sept 2017

http://www.eclipse.org/openj9
https://github.com/eclipse/openj9

Dual License:
Eclipse Public License v2.0

Apache 2.0

Users and contributors very welcome
https://github.com/eclipse/openj9/blob/master/CONTRIBUTING.md

7

http://www.eclipse.org/omr
https://github.com/eclipse/openj9
https://github.com/eclipse/omr/blob/master/CONTRIBUTING.md

Garbage Collection

8

Garbage Collection

“Garbage Collection (GC) is a form of automatic memory
management. The garbage collector attempts to reclaim
memory occupied by objects that are no longer in use by the
application.”

9

Garbage Collection

I
Allocation of

memory

II
Identification

of live data

III
Reclamation
of garbage

10

Garbage Collection

Positives

v Automatic memory management
v Help reduce certain categories of

bugs

Negatives
v Require additional resources
v Causes unpredictable pauses
v May introduce runtime costs
v Application has little control of when

memory is reclaimed

11

GC Algorithms [1]

Reference counting

Mark Sweep

Region based
Generational

Mark Sweep Compact

Parallel

Concurrent

12

Garbage Collection Policies

gencon CS – pauseless collector

balanced – region based collector

-Xgcpolicy:

13

-Xgcpolicy:gencon

Provides a significant reduction in GC STW pause times

Introduces write barrier for the remembered set

Generational copy collector

Concurrent global marking phase

14

-Xgcpolicy:gencon Heap

Heap is divided into Nursery and Tenure Spaces

Tenure

Heap

Nursery

15

-Xgcpolicy:gencon heap

Heap is divided into Nursery and Tenure Spaces

Heap

The Nursery is divided into 2 logical spaces: Allocate and Survivor

TenureAllocate Survivor

16

-Xgcpolicy:gencon GC

Scavenge
1

Scavenge
2

Global
Start

Scavenge
3

Global
End

17

-Xgcpolicy:gencon GC

Why do we need a write barrier?

Write Barrier

24

-Xgcpolicy:gencon GC

Why do we need a write barrier?

The GC needs to be able to find objects in the nursery which are only
referenced from tenure space

Write Barrier

25

-Xgcpolicy:gencon GC

How’s the write barrier implemented?

Write Barrier

private void setField(Object A, Object C) {
| A.field1 = C;

}

26

-Xgcpolicy:gencon GC

How’s the write barrier implemented?

Write Barrier

private void setField(Object A, Object C) {
| A.field1 = C;
| if (A is tenured) {
| | if (C is NOT tenured) {
| | | remember(A);
| | }
| }

}

27

-Xgcpolicy:gencon GC
Write Barrier

private void setField(Object A, Object C) {
| A.field1 = C;
| if (A is tenured) {
| | if (C is NOT tenured) {
| | | remember(A); // ß
| | }
| | if (concurrentGCActive) {
| | | cardTable->dirtyCard(A);
| | }
| }

}

28

Introduces read Barrier for Concurrent Compact

Generational copy collector

Pauseless GC

-Xgcpolicy:gencon GC
Concurrent Scavenger

29

Heap is divided into Nursery and Tenure Spaces

Heap

The Nursery is divided into 2 logical spaces: Allocate and Survivor

TenureAllocate Survivor

-Xgcpolicy:gencon GC
Concurrent Scavenger

30

-Xgcpolicy:gencon GC

CS 1
start

Global
Start

CS 1
end

CS 2
start

CS 2
end

Concurrent Scavenger

31

Multiple GC threads trying to move objects

And mutator threads trying to access these same objects

Concurrent Scavenger

32

Concurrent Scavanger

Class

Field1

Field2

To Space
(Survivor)

GC Thread1

Mutator
Thread2

Class

Field1

Field2
Class

Field1

Field2

From Space
(Allocate/Evacuate)

36

Concurrent Scavanger
To Space
(Survivor)

GC Thread1

Mutator
Thread2

Class

Field1

Field2
Class

Field1

Field2

Field1

Field2

Forward
Pointer

From Space
(Allocate/Evacuate)

37

Concurrent Scavanger
To Space
(Survivor)

GC Thread1

Mutator
Thread2

Class

Field1

Field2
Class

Field1

Field2

Field1

Field2

Forward
Pointer

From Space
(Allocate/Evacuate)

38

Dynamic Breadth First Scan Ordering

•Example 1 – Gencon with Breadth First Scan Ordering

•Example 2 – Gencon with Dynamic Breadth First Scan Ordering

Key Concepts

Results & Takeaways

39

Locality
• 90/10 rule
• Caching
• Cache Prefetching
• Caching Hit to Miss ratio

40

Hot Fields and Access Patterns
• According to the 90/10 rule – if 90% of time is spent in 10% of code, there

is likely some very hot object access patterns and very hot fields
• A hot field is a field that is frequently accessed by an object instance
• A hot access pattern is an object access pattern or path that occurs

frequently

41

Hot Fields and Access Patterns - Example

A

B

D E

C

F G

90%10%

90%10%90%10%

42

Hot Fields and Access Patterns - Example

Ideally, we would have A, C and G spatially localized in memory, and B and E spatially
localized in memory

90%10%

90%10%90%10%

A

B

D E

C

F G

43

SurvivorAllocate Tenure

A D E F GCB H

Initial

A
F

Root SetEx: Breadth First Gencon GC

44

AllocateSurvivor Tenure

H

Final

SurvivorAllocate Tenure

A D E F GCB H

F1A1 B1 C1 E1D1 G1

Initial

A
F

Root SetEx: Breadth First Gencon GC

45

• With common access patterns of Aà C à G and B à E, the exisiting
breadth first scan ordering implementation is clearly not optimal with
regards to locality

AllocateSurvivor Tenure

H

Final

F1A1 B1 C1 E1D1 G1

Gencon GC – Breadth First Issues

46

Goal of Dynamic Breadth First Scan Ordering
• Optimize breadth first scan ordering for improved locality
• Leverage available JIT information for improved locality
• Render locality dependent optimization mechanisms more effective

47

• What is a compiler?
• What is an optimizing compiler?
• What is dynamic compilation?

Relevant Existing Infrastructure

48

What is a Compiler?
• A translator
– Takes code written in one (source) language and produces

equivalent code in another (target) language
• Possible source and target languages:
– Source code to machine code (gcc, clang, etc.)
– Source code to bytecode (javac)
– Bytecode to machine code (Testarossa JIT)
– ... and more

49

What is an Optimizing Compiler?

• Tries to produce “good” code
• Good (optimized) code should:

• Execute faster
• Require less memory
• Consume less power

50

What is dynamic compilation?

• Interpreter invokes the compiler just in time before a method
becomes a performance problem

• The Just-In-Time compiler (jit) turns bytecode into much faster
native code

• Eclipse OpenJ9’s Testarossa JIT compiler is an optimizing
compiler

51

Relevant JIT Compiler Information Leveraged

• Applications consists of compilation instances (logical compilation entities – i.e.
methods)

• The JIT Compiler is a tiered compilation compiler
• IBM Testarossa compilation levels - cold, warm, hot, very hot, scorching
• Each compilation is divided into “blocks” where the relative hotness of each code

block within the compilation gets a normalized block “hotness” value from 1-10000

52

Relevant JIT Compiler Information Leveraged

• When a field is accessed within a compilation, we can compute an overall ”hotness”
value approximation for the field access using:
• the compilation optimization level of the method
• the block “hotness” of the block within the compilation where the field was

accessed
• This “hotness” value is computed for every field access of every compilation
• For each field of a class, we can aggregate these “hotness” values for all field access’

across all method compilations

53

Relevant JIT Compiler Information Leveraged

• Hotness values are aggregated via a hotness aggregation algorithm
• Recursively depth copy the object’s two hottest fields directly after an object is

copied if hot fields for the object exist
• Assure minimum hotness requirements are met before allowing a field to be depth

copied

54

Simple Field Hotness Calculation Example

55

Simple Field Hotness Calculation Example

56

Simple Field Hotness Calculation Example

57

Simple Field Hotness Calculation Example

58

Simple Field Hotness Calculation Example

59

Simple Field Hotness Calculation Example

60

Ex: Dynamic Breadth First Gencon GC

Root Set

Allocate
Tenure

A D E F GCB H

A
F

A

B

D E

C

F G

90%10%

90%10%90%10%

Survivor
61

Ex: Dynamic Breadth First Gencon GC

A
F

Root Set Scan cache

Allocate

A D E F GCB H

Survivor Tenure

Copy cache

62

Ex: Dynamic Breadth First Gencon GC
Scan cacheRoot Set

Allocate

A D E F GCB H

A
F

Survivor Tenure

Copy cache

63

Ex: Dynamic Breadth First Gencon GC
Scan cacheRoot Set

Allocate

D E F GCB H

A

A

A
F

Survivor Tenure

Copy cache

64

Ex: Dynamic Breadth First Gencon GC
Scan cacheRoot Set

Allocate

D E F GB H

A

A C

CA
F

Survivor Tenure

Copy cache

65

Ex: Dynamic Breadth First Gencon GC
Scan cacheRoot Set

Survivor

D E FB H

A

A C

C G

G

A
F

Allocate Tenure

Copy cache

66

Gencon GC – Ex: Dynamic Breadth First
Scan cacheRoot Set

Survivor

D EB H

A

A C

C G

G

A
F

F

F

Allocate Tenure

Copy cache

67

Gencon GC – Ex: Dynamic Breadth First

Survivor

D EB HA C G F

Scan cacheWork list

A1 D1 F1A1 D1 F1A C G F

Allocate Tenure

Copy cache

68

Gencon GC – Ex: Dynamic Breadth First

Survivor

D E HA C G F

Scan cache
Work list

A1 D1 F1Q1 R1 L1
A C G F

A C G F

B

Allocate Tenure

Copy cache

69

Gencon GC – Ex: Dynamic Breadth First

Survivor
Allocate

D E HA C G F

Scan cache
Work list

A1 D1 F1Q1 R1 L1
A C G F

A C G F

B

B

B

Tenure

Copy cache

70

Gencon GC – Ex: Dynamic Breadth First

Survivor
Allocate

D HA C G F

Work list

A1 D1 F1Q1 R1 L1

B E

Scan cache A C G F B E

A C G F B E

Tenure

Copy cache

71

Gencon GC – Ex: Dynamic Breadth First

Survivor
Allocate

D HA C G F

Work list

A1 D1 F1Q1 R1 L1

B E

Scan cache A C G F B E

A C G F B E

Tenure

Copy cache

72

Gencon GC – Ex: Dynamic Breadth First

Survivor
Allocate

D HA C G F

Work list

A1 D1 F1Q1 R1 L1

B E

Scan cache A C G F B E

A C G F B E

Tenure

Copy cache

73

Gencon GC – Ex: Dynamic Breadth First

Survivor
Allocate

D HA C G F

Work list

A1 D1 F1Q1 R1 L1

B E

Scan cache A C G F B E

A C G F B E

Tenure

Copy cache

74

Gencon GC – Ex: Dynamic Breadth First

Survivor
Allocate

HA C G F

Scan cache
Work list

A1 D1 F1Q1 R1 L1
A C G F

B

B

E

E D

A C G F B E D

D

Tenure

Copy cache

75

Gencon GC – Ex: Dynamic Breadth First

Survivor
Allocate

HA C G F

Scan cache
Work list

A1 D1 F1Q1 R1 L1
A C G F

B

B

E

E D

A C G F B E D

D

Tenure

Copy cache

76

Gencon GC – Ex: Dynamic Breadth First

Survivor
Allocate

HA C G F

Scan cache
Work list

A1 D1 F1Q1 R1 L1
A C G F

B

B

E

E D

A C G F B E D

D

Tenure

Copy cache

77

AllocateSurvivor Tenure

H

Final
SurvivorAllocate Tenure

A D E F GCB H

FA BC DG

Gencon GC – Ex: Dynamic Breadth First

Initial

A
F

Root Set

E

78

AllocateSurvivor Tenure
HF1A1 B1C1 D1G1

Breadth First vs. Dynamic Breadth First

E1

A

B

D E

C

F G

90%10%

90%10%90%10%

Breadth First

AllocateSurvivor Tenure
HF1A1 B1 C1 E1D1 G1

A
F

Root Set

Dynamic Breadth First

79

Example Takeaways
• Dynamic Breadth First Scan Ordering enables the possibility to have

objects accessed frequently spatially localized in memory
• Among other things, Dynamic Breadth First Scan Ordering will likely result

in a higher cache hit ratio compared to standard Breadth First Scan
Ordering

80

Results – Breadth First vs Dynamic Breadth
First
• 2-8% throughput improvements on various benchmarks
• Negligible difference in application compile time
• 2-3% increase in average application GC pause time
• Future development iterations will be optimized to reduce GC

overhead while continuing to improve application throughput
efficiency

81

Dynamic Breadth First Summary

• Leverage existing JIT infrastructure
• Every method is divided into logical blocks where blocks are assigned

a normalized hotness value between 1 – 10000
• The overall “hotness” of each field access depends on 2 key factors:

• The block frequency of the compilation block the field has been reported in
• The tiered compilation level that the compiler is currently compiling the

method at when the field has been reported

82

-Xgcpolicy:balanced

Provides a significant reduction in max GC STW pause times

Introduces a write barrier to track inter region references

Region based generational collector

Incremental heap defragmentation

83

-Xgcpolicy:balanced Heap

Heap is divided into a fixed number of regions

v Region size is always a power of 2
v Attempts to have between 1000-2000 regions
v Bigger heap == bigger region size

Heap
84

-Xgcpolicy:balanced Heap

Allocate from Eden regions

v Eden can be any set of completely free regions
v Attempts to pick regions from each NUMA node

Heap
85

-Xgcpolicy:balanced Heap

No non-array object can be larger than a region size

vIf (object_size > Region_size) throw OutOfMemoryError

Large arrays are allocated as arraylets

v Arrays less than region size are allocated as normal arrays

86

-Xgcpolicy:balanced GC

PGC 1 GMP
start PGC 2

GMP
End PGC 3

GMP cycle
87

-Xgcpolicy:balanced Global Mark Phase (GMP)

Does not reclaim any memory

Performs a marking phase only

Scheduled to run in between PGCs

Builds an accurate mark map of the whole heap

Mark map is used to predict region ROI for PGC

88

-Xgcpolicy:balanced

89

-Xgcpolicy:balanced

Why do we need a write barrier?

Write Barrier

Balanced PGCs can select any region to be included in the
collect phase

Similar to the generational barrier, the GC needs to know
which regions reference a given region

90

-Xgcpolicy:balanced

How is the write barrier implemented?

Write Barrier

private void setField(Object A, Object C) {
| A.field1 = C;

}

91

-Xgcpolicy:balanced
Write Barrier

private void setField(Object A, Object C) {
| A.field1 = C;
| dirtyCard(A);

}
private void checkCards() { // Beginning of PGC
| for(eachCard)…
| | if (findRegion(A) != findRegion(C)) {
| | | addRSCLEntryFor(C, A);
| | }

}

92

Arraylets

Large Arrays that cannot fit into a single region

vArray is created from construct comprising of an
arraylet spine and 1 or more arraylet leaves

vAn arraylet spine is allocated like a normal object

vEach leaf consumes an entire region

93

Arraylets

94

Arraylets

95

Arraylets

Arraylets were introduced so that arrays were more cleverly
stored in the heap for balanced and metronome GC policies.

Some APIs require a contiguous view of an array

96

Arraylets

Some APIs require a contiguous view of an array

The case of Java Native Interface (JNI) Critical APIs

JNI Critical is used when the programmer wants direct
addressability of the object.

97

Arraylets

98

Arraylets

99

Arraylets

100

Arraylets

Very expensive!!

101

Arraylets
Double Mapping

Make large arrays (discontiguous arraylets) look contiguous

Virtual Memory address space is large in 64 bit systems, 264 in fact
compared to 32 bits in 32 bit systems

Physical memory is limited

102

Arraylets
Double Mapping

Map 2 virtual memory addresses to the same physical
memory address

Any modifications to the newly mapped address will reflect
the original array data, and vice-versa

103

Arraylets
Double Mapping

104

Arraylets
Double Mapping

Comparing JNI critical operations, array operations received
30x boost in speedup

105

Double Mapping Arraylets are only available on newer
version of Linux

Can We do better?

Off-heap management for large objects

106

Doable with shm_open(3) but:
• It returns a file descriptor (backed by shared memory)
• Linux systems have cap on max sshm_openhared

memory

Double Mapping Drawbacks

Doable with memfd_create(2) but:
• It also returns a file descriptor
• Behaves like regular file backed by RAM
• Only available on newer GLIBC versions

107

Does not require file descriptors

Off-heap Management for Large Objects

It also takes advantage of vast virtual memory space

Will only be available in 64bit systems

108

Off-heap Management

109

Off-heap Management

110

Off-heap Management

What's the smallest off-heap that we can come up with so
that we we'll never have to compact it?

111

Off-heap Management

If we're greedy
off_heap_size = in_heap_size * region_count
off_heap_size = 2TB * 1024 // == 2PB == 251 B

The smallest object that we'll be storing at off-heap is as
big as 2 regions

112

Off-heap Management

What's the worst possible allocation pattern we can get?

Allocate objects of region size 2

Free half of objects with a pattern of every other object

Allocate objects of region size 3

113

Off-heap Management

What's the worst possible allocation pattern we can get?

Free half of objects with a pattern of every other object

Free half of objects with a pattern of every other object

Allocate objects of region size 7

114

Off-heap Management

There's a pattern!
Now we can calculate off-heap size with a better upper bound

115

Off-heap Management

If we're smart
off_heap_size = ceil(log2(region_count) * in_heap_size / 2

off_heap_size = ceil(log2(1024) * 2TB / 2 // == 20TB ~ 244 B

Before
off_heap_size = 2TB * 1024 // == 2PB == 251 B

116

Off-heap Management

• Any platform that supports virtual
memory can benefit

• Unburdens in-heap from large object
allocation

• Off-heap will never need to be compacted

• Does not require file descriptors

Positives Negatives

• Whenever we commit memory at off-
heap we must decommit memory at in-
heap, and vice-versa

• One extra level of indirection to access
array data

117

GC Policies

Gencon CS

Metronome

Shenandoah

ZGC

G1 GCBalanced

Gencon

Azul C4

CMS

Pauseless GCs Pauseless GC with
special hardware

Common GCs
Throughput centric

Old/new space | generational |
copy collector

Region based | generational | copy collector

Region based

Read barrier

118

Summary

throughput = !" #$%&'
(

Perfect Pauseless GCPerfect STW GC vs

Higher
Throughput

Longer pauses

Lower
Throughput

Shorter pauses

Dynamic Breadth First
Scan Ordering

Double Mapping

Off-heap Object
Management

119

Links

Eclipse OpenJ9
https://www.eclipse.org/openj9

https://www.eclipse.org/openj9/docs/cmdline_migration

AdoptOpenJDK
https://adoptopenjdk.net

Eclipse OMR
https://www.eclipse.org/omr/

Eclipse OMR

120

https://www.eclipse.org/openj9
https://adoptopenjdk.net/?variant=openjdk8-openj9
https://www.eclipse.org/omr/

Questions?
@igor_h_braga

igorbraga

JPoint 2021

oommen-j

121

References

R. Jones et al. “The Garbage Collection Handbook”. Chapman & Hall/CRC, 2012

122

