
[Daily]
Kotlin tooling QA

Liliia Abdulina
JetBrains, Kotlin team

Kotlin tooling QA

● What are you doing?

● How do you do that?

● How do they getting into it?

● Fun?

What are you doing?

● JetBrains, Kotlin

● Tooling

● Environment

● Open tracker

● Documentation

What are you doing?

● JetBrains, Kotlin

● Tooling

● Environment

● Open tracker

● Documentation

Kotlin

● JVM, JS, Native (Windows, Linux, MacOS, iOS)

● Scripts & Kotlin DSL

● Mobile, Desktop, Web, Server, Embedded…

● Uber, Pinterest, Coursera…

Kotlin is concise
public class JPerson {
 private final String name;
 private final int age;

 public JPerson(String n, int a) {
 name = n;
 age = a;
 }

 public String getName() {
 return name;
 }

 public int getAge() {
 return age;
 }
} // Java

Kotlin is concise
class JPerson(val name: String,

val age: Int)

// Kotlin

public class JPerson {
 private final String name;
 private final int age;

 public JPerson(String n, int a) {
 name = n;
 age = a;
 }

 public String getName() {
 return name;
 }

 public int getAge() {
 return age;
 }
} // Java

Feature types

● IDE features
○ Refactorings, inspections, dialogs, ...

IDE features: refactoring

fun f() {
 val a = 1
 val n = a + 1
 val b = n + 1
}

IDE features: refactoring

fun f() {
 val a = 1
 val n = a + 1
 val b = n + 1
}

// Refactor > Extract > Function

IDE features: refactoring

fun f() {
 val a = 1
 val n = a + 1
 val b = n + 1
}

fun f() {
 val n = i()
 val b = n + 1
}

private fun i(): Int {
 val a = 1
 val n = a + 1
 return n
}

IDE features: refactoring

fun f() {
 val a = 1
 val `fun` = a + 1
 val b = `fun` + 1
}

// Refactor > Extract > Function

IDE features: refactoring

fun f() {
 val a = 1
 val `val` = a + 1
 val b = `val` + 1
}

// Refactor > Extract > Function

Let’s go deeper

val strings = listOf("Orange", "Apple", "Carrot")

Let’s go deeper

val strings = listOf("Orange", "Apple", "Carrot")

strings.filter { it.length == 6 }

Lambdas

val strings = listOf("Orange", "Apple", "Carrot")

strings.filter { it.length == 6 }
// lambda; it: String

Lambdas

/**
* Returns a list containing only elements matching the given
[predicate].
*/
public inline fun <T> Iterable<T>

.filter(predicate: (T) -> Boolean): List<T> {
 /* ... */
}

IDE features: scratch files

val strings = listOf("Orange", "Apple", "Carrot")

strings.filter { it.length == 6 }

IDE features: scratch files

val strings = listOf("Orange", "Apple", "Carrot")

strings.filter { it.length == 6 }

IDE features: intentions

● Conversion: run ↔ let, apply ↔ also

○ Sometimes it is useful to replace a standard scoping function
accepting a lambda with receiver with a standard scoping
function accepting a lambda with single parameter (e.g., to
avoid names clash, or to simplify some sub-expression).

`run` with receiver

/**
* Calls the specified function [block] with `this` value as
its receiver and returns its result.
*/
@kotlin.internal.InlineOnly
public inline fun <T, R> T.run(block: T.() -> R): R {

/* ... */
}

`let` with parameter

/**
* Calls the specified function [block] with `this` value as
its argument and returns its result.
*/
@kotlin.internal.InlineOnly
public inline fun <T, R> T.let(block: (T) -> R): R {
 /* ... */
}

IDE features: intentions

open class Person(val firstName: String)
class Employee(name: String, var manager: Person?) : Person(name)

val employee = Employee("e", Person("m"))

val test = employee.also {
 it.manager?.run { // replace ‘run’ with ‘let’
 println("${it.firstName} has a manager")
 }
}

IDE features: intentions

open class Person(val firstName: String)
class Employee(name: String, var manager: Person?) : Person(name)

val employee = Employee("e", Person("m"))

val test = employee.also {
 it.manager?.run { // replace ‘run’ with ‘let’
 println("${it.firstName} has a manager")
 }
}

IDE features: intentions

open class Person(val firstName: String)
class Employee(name: String, var manager: Person?) : Person(name)

val employee = Employee("e", Person("m"))

val test = employee.also {
 it.manager?.run { // replace ‘run’ with ‘let’
 println("${it.firstName} has a manager")
 }
}

IDE features: intentions

open class Person(val firstName: String)
class Employee(name: String, var manager: Person?) : Person(name)

val employee = Employee("e", Person("m"))

val test = employee.also {
 it.manager?.run { // replace ‘run’ with ‘let’
 println("${it.firstName} has a manager")
 }
}

Feature types

● IDE features
○ Refactorings, inspections, dialogs, ...

● Language features
○ Multiplatform, annotations support, compiler flags, …

Kotlin tooling includes but not limited to

● New file, module & project wizard

● Autocomplete, highlighting, code style

● Refactorings, inspections, intentions

● Run configurations, builders, debug

Who is there?

● 63 team members
○ + contributors

● 1 compiler QA

● 5 tooling QA
○ 3 tooling QA before the August :)

What are you doing?

● JetBrains, Kotlin

● Tooling

● Environment

● Open tracker

● Documentation

Test environment

● Kotlin plugin versions (2 or 3)

Test environment

● Kotlin plugin versions (2 or 3)

● IDEAs and Studios: (2 or 3) + (2 or 3)

Test environment

● Kotlin plugin versions (2 or 3)

● IDEAs and Studios: (2 or 3) + (2 or 3)

● Gradle versions (many :))

Test environment

● Kotlin plugin versions (2 or 3)

● IDEAs and Studios: (2 or 3) + (2 or 3)

● Gradle versions (many :))

● Libraries (many :))

● … (even more)

What are you doing?

● JetBrains, Kotlin

● Tooling

● Environment

● Open tracker

● Documentation

Open tracker

● kotl.in: https://youtrack.jetbrains.com/issues/KT

https://kotlinlang.org/
https://youtrack.jetbrains.com/issues/KT

Open tracker

● kotl.in: https://youtrack.jetbrains.com/issues/KT

● Users

https://kotlinlang.org/
https://youtrack.jetbrains.com/issues/KT

Open tracker

● kotl.in: https://youtrack.jetbrains.com/issues/KT

● Users

● Contributors

https://kotlinlang.org/
https://youtrack.jetbrains.com/issues/KT

Open tracker

● kotl.in: https://youtrack.jetbrains.com/issues/KT

● Users

● Contributors

● Enthusiasts

https://kotlinlang.org/
https://youtrack.jetbrains.com/issues/KT

Open tracker: tickets

Open tracker: stories

● Google the code

Open tracker: stories

● Google the code

● Code screenshots & screencasts

Open tracker: stories

● Google the code

● Code screenshots & screencasts

● Projects with thousands of code lines

What are you doing?

● JetBrains, Kotlin

● Tooling

● Environment

● Open tracker

● Documentation

Documentation

● YouTrack issues

Documentation

● YouTrack issues

● Developers and community

Documentation

● YouTrack issues

● Developers and community

● Design meeting notes & KEEP

Documentation

● YouTrack issues

● Developers and community

● Design meeting notes & KEEP

● Git commit messages & code

Documentation

● YouTrack issues

● Developers and community

● Design meeting notes & KEEP

● Git commit messages & code

● Slack

What are you doing?

● JetBrains, Kotlin

● Tooling

● Environment

● Open tracker

● Documentation

How do you do that?

How do you do that?

● Prioritise

How do you do that?

● Prioritise

● Explore

How do you do that?

● Prioritise

● Explore

● Systematize

How do you do that?

● Prioritise

● Explore

● Systematize

● Teamwork in terms of workload

How do you do that?

● Prioritise

● Explore

● Systematize

● Teamwork in terms of workload

● Share some domains & knowledge

How do you do that?

⇪ Prioritise

🔍 Explore

⅀ Systematize

⚖ Teamwork in terms of workload

↪ Share some domains & knowledge

How do you do that?

⇪ Prioritise

🔍 Explore

⅀ Systematize

⚖ Teamwork in terms of workload

↪ Share some domains & knowledge

What you do again?

● Release testing

● New features testing

● Reproduce & reduce

● Fixes verification

● Infrastructure tasks

● …

What you do again?

● Release testing

● New features testing

● Reproduce & reduce

● Fixes verification

● Infrastructure tasks

● …

Release testing

Release testing

⇪ The highest priority

Release testing

⇪ The highest priority

🔍 The most formalized flow

Release testing

⇪ The highest priority

🔍 The most formalized flow

⅀ Test projects, cases & tracking doc

Release testing

⇪ The highest priority

🔍 The most formalized flow

⅀ Test projects, cases & tracking doc

⚖ Release manager & dogfooding

Release testing

⇪ The highest priority

🔍 The most formalized flow

⅀ Test projects, cases & tracking doc

⚖ Release manager & dogfooding

↪ Acceptance & urgent activities

What you do again?

● Release testing

● Reproduce & reduce

● New features testing

● Fixes verification

● Infrastructure tasks

● …

Reproduce & reduce

Reproduce & reduce

⇪ Lower than release, sporadically

Reproduce & reduce

⇪ Lower than release, sporadically

🔍 Reproduce with initial STR & Reduce
○ Get the details: build, IDE version, additional plugins…

Reproduce & reduce

⇪ Lower than release, sporadically

🔍 Reproduce with initial STR & Reduce
○ Get the details: build, IDE version, additional plugins…

⅀ Describe the minimal STR

Reproduce & reduce

⇪ Lower than release, sporadically

🔍 Reproduce with initial STR & Reduce
○ Get the details: build, IDE version, additional plugins…

⅀ Describe the minimal STR

⚖ Ask the developers

Reproduce & reduce

⇪ Lower than release, sporadically

🔍 Reproduce with initial STR & Reduce
○ Get the details: build, IDE version, additional plugins…

⅀ Describe the minimal STR

⚖ Ask the developers

↪ Share the case

What you do again?

● Release testing

● Reproduce & reduce

● New features testing

● Fixes verification

● Infrastructure tasks

● ...

New features testing

New features testing

⇪ “Big” & “small” features

New features testing

⇪ “Big” & “small” features

🔍 Domain knowledge > oracle
○ Several obvious bugs as a side effect

New features testing

⇪ “Big” & “small” features

🔍 Domain knowledge > oracle
○ Several obvious bugs as a side effect

⅀ Comprehensive exploratory > project with test cases
○ The vast majority of bugs

New features testing

⇪ “Big” & “small” features

🔍 Domain knowledge > oracle
○ Several obvious bugs as a side effect

⅀ Comprehensive exploratory > project with test cases
○ The vast majority of bugs

⚖ Talk to developers, reject the acceptance

New features testing

⇪ “Big” & “small” features

🔍 Domain knowledge > oracle
○ Several obvious bugs as a side effect

⅀ Comprehensive exploratory > project with test cases
○ The vast majority of bugs

⚖ Talk to developers, reject the acceptance

↪ Regressions, reproductions, acceptance cases

What you do again?

● Release testing

● Reproduce & reduce

● New features testing

● Fixes verification

● Infrastructure tasks

● …

Fixes verification

Fixes verification

⇪ Tired of features? Verify!

Fixes verification

⇪ Tired of features? Verify!

🔍 Getting into the context; read the code

Fixes verification

⇪ Tired of features? Verify!

🔍 Getting into the context; read the code

⅀ Special search in YouTrack

Fixes verification

⇪ Tired of features? Verify!

🔍 Getting into the context; read the code

⅀ Special search in YouTrack

⚖ Ask the developers & read the code

Fixes verification

⇪ Tired of features? Verify!

🔍 Getting into the context; read the code

⅀ Special search in YouTrack

⚖ Ask the developers & read the code

↪ Check the related issues and duplicates

What you do again?

● Release testing

● Reproduce & reduce

● New features testing

● Fixes verification

● Infrastructure tasks

● …

Infrastructure tasks

Infrastructure tasks

⇪ When you have some time…

Infrastructure tasks

⇪ When you have some time…

🔍 Depends on the task

Infrastructure tasks

⇪ When you have some time…

🔍 Depends on the task

⅀ Update, automate, tag

Infrastructure tasks

⇪ When you have some time…

🔍 Depends on the task

⅀ Update, automate, tag

⚖ Race a readiness

Infrastructure tasks

⇪ When you have some time…

🔍 Depends on the task

⅀ Update, automate, tag

⚖ Race a readiness

↪ Sync, share the projects

What you do again?

● Release testing

● Reproduce & reduce

● New features testing

● Fixes verification

● Infrastructure tasks

● …

…

…

⇪ Background task

…

⇪ Background task

🔍 IDE is mutable
○ ...so are the other dependencies

…

⇪ Background task

🔍 IDE is mutable
○ ...so are the other dependencies

⅀ Track the incoming flow & watch github commits

…

⇪ Background task

🔍 IDE is mutable
○ ...so are the other dependencies

⅀ Track the incoming flow & watch github commits

⚖ Read & listen to everything, watch the meetings

…

⇪ Background task

🔍 IDE is mutable
○ ...so are the other dependencies

⅀ Track the incoming flow & watch github commits

⚖ Read & listen to everything, watch the meetings

↪ Discuss & point out

…

⇪ Background task

🔍 IDE is mutable
○ ...so are the other dependencies

⅀ Track the incoming flow & watch github commits

⚖ Read & listen to everything, watch the meetings

↪ Discuss & point out
⟲ … :)

What you do again?

● Release testing

● Reproduce & reduce

● New features testing

● Fixes verification

● Infrastructure tasks

● …

Sum up

● Complex environment

Sum up

● Complex environment

● Intense information flow

Sum up

● Complex environment

● Intense information flow

● Prioritize

Sum up

● Complex environment

● Intense information flow

● Prioritize

● Share the knowledge & work as a team

Sum up

● Complex environment

● Intense information flow

● Prioritize

● Share the knowledge & work as a team

● Be responsive and observable

Kotlin tooling QA

● What are you doing?

● How do you do that?

● How do they getting into it?

● Fun?

Newbie onboarding: quick review

Newbie onboarding: quick review

● Work hard :)

Newbie onboarding

● Basic infrastructure & process info

Newbie onboarding

● Basic infrastructure & process info

● Kotlin tutorials and documentation (kotl.in)

https://kotlinlang.org/

Newbie onboarding

● Basic infrastructure & process info

● Kotlin tutorials and documentation (kotl.in)

● Trial acceptance

https://kotlinlang.org/

Newbie onboarding

● Basic infrastructure & process info

● Kotlin tutorials and documentation (kotl.in)

● Trial acceptance

● Reproduce, verify

https://kotlinlang.org/

Newbie onboarding

● Basic infrastructure & process info

● Kotlin tutorials and documentation (kotl.in)

● Trial acceptance

● Reproduce, verify

● Test an IDE feature, a language feature

https://kotlinlang.org/

Newbie onboarding

● Basic infrastructure & process info

● Kotlin tutorials and documentation (kotl.in)

● Trial acceptance

● Reproduce, verify

● Test an IDE feature, a language feature

● Get a “big feature”

https://kotlinlang.org/

Why it’s fun?

● The product is cool & valuable

Why it’s fun?

● The product is cool & valuable

● You learn every day

Why it’s fun?

● The product is cool & valuable

● You learn every day

● Very loyal and responsive community

Why it’s fun?

● The product is cool & valuable

● You learn every day

● Very loyal and responsive community

● Bugs are everywhere!

Why it’s fun?

● The product is cool & valuable

● You learn every day

● Very loyal and responsive community

● Bugs are everywhere!

● That was just a part of all activities :)

Thank you!

Liliia Abdulina,

Kotlin tooling QA

kotl.in

Telegram: @wild_lynx

Blog: https://medium.com/@liliia

E-mail: lilia.abdulina@jetbrains.com

https://kotlinlang.org/
https://medium.com/@liliia
mailto:lilia.abdulina@jetbrains.com

