Orion
Innovation-
formerl ly MERA

VideoTech conference

A/V Sync in Android

Oct, 2022

Orion

Innovation:

formerly MERA

daNn>=0ID

Applications

A/ Sync = Audio and Video Synchronized

S i

Human Sensitivity

Skew

20ms
50ms
1000ms

Effect

Not visible
Something’s wrong

Video is ignored

Customer
Request

Task: create Android Videophone

android 4w

Task: create Android Videophone

T
T

android &%

Task: create Android Videophone

T
T

Custom u

lib

android &%

Task: create Android Videophone

android &%

T

“

Custom \
service /& Llnux

Task: create Android Videophone

. Orion
android &% o Innovation®

| formerly MERA

ggf\fgg \ ,& Linux Anonymous
Customer

Task: create Android Videophone

. Orion
android &% o Innovation®

formerly MERA

ggf’\ff(’:r: & Linux Anonymous
Customer

Architecture
android &%

%o mmmp (Jo[]

WebRTC WebRTC

15,) ?é‘f‘vtf’cré‘\ A”di" — senice u ':>“@))>
|
6 Linux

Architecture
android &%

"'E>C.13¢>Q

WebRTC WebRTC

\9\)

L
5 E> Custom \ Audio RTP Custom |:>
= service serwce
|
6 Linux

How A/V sync works?

How A/V sync works?

How A/V sync works?

YO
“Magict

‘*\ * k*

How A/V sync works?

) *"I\/Ioglcf

\ N2

~_)

Timestamps

e

Theory

Two Streams

Recorder/Sender Player/Receiver

®.D

Time Stamps

Recorder/Sender Player/Receiver

e
% T)

Skew

Recorder/Sender

®.9
-

Video

.

)

Skew

Audio

A

Player/Receiver

Recording side

Recorder Delays - Video

Recorder Delays - Audio

B noc |2 r_#:

(O
&

Three clocks

Video
timestamps

i

'

Audio
timestamps

Video frames may carry time
stamps set by the camera clock

Audio frames may carry
timestamps set by the
microphone

By default we can’t guarantee
that two clocks are synced and
we need third clock that can be
used for sync

()

Wall Clock

How RTP handles multiple clocks

Video RTP RTCP packets for Video

Stream carry camera

Video
fimestamps glock and wall clock
Video RTCP timestamps
Wall Clock : _
Audio RTCP RTCP packets for Audio
Stream carry microphone

Audio RTP c_Iock and wall clock
timestamps

Audio
timestamps

RTCP packet

vV |P RC PT=200 Length
Reporter S5RC
NTP timestamp
RTP timestamp
Sender's packet count

Sender's octet count

Receiver report block(s)

I

- Wall clock
- Audio/Video clock

Rules for sending side

* All A/V Sync logic will happen on the receiving side before
playback

* Sending side needs to provide enough info for this

e This info should include timestamps for all audio and video
chunks and wall clock timestamps to synchronize streams

Playback side

Playback difference

Malleable - can play a
media sample on
command, at any time

Nonmalleable - always
consume data at a
constant rate

T T v 111 >Q

@»

Jitter Buffer

 Nonmalleable devices require Jitter Buffer

Player Delays - Video

Audio Timestamps

Human Sensitivity

* Humans can notice very small skew. Especially if video
has high resolution and frame rate

* Interrupts in audio are more noticeable

e Skew is more noticeable if audio is ahead of video

A/V Sync Rules

1. A/V Sync happens entirely on receiving side
2. Play audio at constant rate and adjust video to it

3. If audio packets come before video packets the
whole audio stream needs to be delayed (can use
Jitter Buffer for this)

4. The only way to ensure sync is to carry timestamps
from start to finish

5. Make sure that timestamps for Audio and Video
streams are coming from the same clock

Sync
architecture

A/V Sync Architecture

Video RTP>

Android app

G

WebRTC

android a%

D e

RTCP >

Audio RTP>

Custom service

RTP/ RTCP
Stack

Audio
Player

6. Linux

=) Q)

A/V Sync Architecture

Video RTP>

Android app

G

WebRTC

android a%

D e

RTCP >

Audio RTP>

Custom service

RTP/ RTCP
Stack

~ =

Jitter Buffer

| B

Audio
Player

/& Linux

= Q)

A/V Sync Architecture

Video RTP>

RTCP >

Audio RTP>

android a%

D e

Android app

WebRTC

/\\
Audio TS 2, -
Custom service
RTP/ RTCP .
Stack TS adjuster
~_L-

Jitter Buffer

| B

Audio
Player

/& Linux

=

A/V Sync Architecture

Video RTP>

Android app

WebRTC l

Sync

Q)

RTCP >

Audio RTP>

android a%

D e

AudioTS
Custom service
RTP/ RTCP .
Stack TS adjuster
~_L-

Jitter Buffer

=

Audio

/& Linux

=

- .pw. & .
(= WebRTC

,_ f.f\ |

WebRTC captures video

k-

®.®
o8
m I:> [MediaRecorder] I:>

WebRTC

WebRTC transfers video

Video RTP

WebRTC WebRTC

WebRTC can A/V Sync...

< o

WebRTC

«10

... only if it handles both audio and video

e
=

WebRTC

MediaSync

s A
' o)
e

e\ 2k

|

\'.'\‘.

"R '

/

MediaSync — native Android framework

* (Can be used to synchronously play audio and video streams
* (Can be used to play audio-only or video-only stream

* Works like this:
1. Take frame from buffer
2. Adjust frame timestamp

3. Send it for Playback/Rendering

How MediaSync really works

1. Configuration parameters are ignored
2. System monolithic clock is used to get “now” time

3. Video frame presentation time is calculated based on
“now” time and VSYNC

4. |If audio is present and video is more than 40ms behind —
skip video frame to catch up

Conclusion

* MediaSync is not configurable for video playback

* MediaSync only helps with adjusting to VSYNC really, if you
only have one stream

* We can MediaSync for video playback, but it does not solve
our problem

ExoPlayer

A/V Sync in ExoPlayer

MediaCodec . MediaCodec
(Audio) MediaSource (Video)

Encoded audio) | Encoded video

[|

Decoded audio) (Decoded video

<+

AudioTrack ¢ AvSync l

Renderer Renderer Surface
(Audio) (Video)

ExoPlayer implements A/V Sync
using standard Android APIs:
AudioTrack & MediaCodec

Audio and Video from
MediaSource must carry synced
timestamps for A/V Sync to work

A/V Sync in ExoPlayer

audioTrack.getTimestamp(audioTimestamp);//Get audio timestamp from AudioTrack
//Some very complicated logic to adjust this timestamp

protected void renderOutputBufferV21(
MediaCodec codec, int index, long presentationTimeUs, long releaseTimeNs) {

//Using adjusted timestamp to render video frame
codec.releaseOutputBuffer(index, releaseTimeNSs);

Multimedia tunneling in ExoPlayer

MediaCod MediaCod . .
“Audio) MediaSource Ve * ExoPlayer supports Multimedia
tunneling
Encadedauto | Ercodl 1 e * This is more efficient and it
[offloads A/V Sync to the
Decoded audio | underlying platform
Add sync .
headers
‘—/
Renderer Renderer
(Audio) (Video)
AudioTrack v

- AvSync —» Surface

Multimedia Tunneling

* This is an optional feature

Provided by: -
B that is present on some
R devices (mostly Android TV)

* Usually not all codecs
Audio Hardware su pport |t

decoder composer
HDM| HDMI .
" el * Useful feature if you want to

output play video in 4K

Video
decoder

Conclusion

By default, ExoPlayer implements its own complex A/V sync
logic, but it only handles playback

ExoPlayer also supports multimedia tunneling (if device can
provide this functionality)

In either case it only works if Audio and Video in
MediaSource already synced somehow

We could’ve used ExoPlayer, but decided against it:
1. Only works for playback

2. Complex sync logic too hard for us to understand and adjust

- .pw. °"°
(= WebRTC
*@‘ o' again?

WebRTC can’t sync just video

e
=

WebRTC

WebRTC renders video with...

= [MediaSync] —>

WebRTC

WebRTC renders video with...

@ MedizSyive=
= J
I:> MediaPlayer

WebRTC

WebRTC renders video with...

é MediaSyive=
—>

WebRTC —> OpenGL

WebRTC renders video with OpenGL

//defined in EglRenderer.java
private void renderFrameOnRenderThread() {

eglBase.swapBuffers(frame.getTimestampNs());

//defined in EglBasel4limpl.java
public void swapBuffers(long timeStampNs) {

EGLExt.eglPresentationTimeANDROID(eglDisplay,eglSurface, timeStampNSs);
EGL14.eglSwapBuffers(eglDisplay, eglSurface);

WebRTC renders video with OpenGL

frame.getTimestampNs()

EGLEXt.eglPresentationTimeANDROID(timeStampNs);

Conclusion

* WebRTC was the obvious choice for us, since it took care of
recording video, transferring and playing it

* WebRTC has an internal A/V sync logic that we couldn’t use,
since we only WebRTC for video

* Fortunately, WebRTC uses OpenGL for rendering video and
it had interface for modifying video frame presentation time

.."'.,o’va, \"°
\ Conclusion

e
, f\f“‘ |

"R '

/

Final solution

Video
RTP

RTCP

Audio
RTP

&

Android app

CI BT GoonGL

WebRTC

Sync

o

android a%

Custom service

Final solution

Video
RTP

RTCP

H

Audio

RTP

Android app

WebRTC

BT GoonGL

Sync g

Video TS

android a%

from RTP v

Custom service

TS adjuster

Final solution

Video
RTP

RTCP

Audio
RTP

Android app

BT GoonGL

WebRTC

Sync

o

Video TS

android a%

from RTP v

Custom service

TS adjuster

1.

Convert both TS to wall
clock and calculate delta

Final solution

Video
RTP

RTCP

Audio
RTP

Android app

BT GoonGL

WebRTC

Sync

o

Video TS

android a%

from RTP v

Custom service

TS adjuster

1.

2.

Convert both TS to wall
clock and calculate delta
Get audio playback TS

Final solution

Video
RTP

RTCP

Audio
RTP

Android app

BTN GoonGL

android a%

Video TS Video
from RTP v playback TS

Custom service

TS adjuster

N

Convert both TS to wall
clock and calculate delta
Get audio playback TS
Calculate video playback
TS and return it

Conclusion

A/V sync is an advanced magic
Better to use frameworks than implement it yourself
MediaSync — can’t recommend

ExoPlayer — excellent for playing video and supports
multimedia tunneling

WebRTC — works best if you want video calls synced

Thank You Orion
o Innovation-

formerly MERA

Fedor Tcymbal fedor.tcymbal@orioninc.com
Technical Manager, CTO . @ftsymbal

orioninc.com

