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Agenda
● Go specifics
● Scheduler
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What is a goroutine?
Logically a thread of execution.

Logically same as:
● OS thread
● coroutine
● green thread
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Most material is generic
... and to large degree applicable to:

● OS thread schedulers
● Coroutine schedulers
● Thread pools
● Other languages
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Go specifics:
1. Current Go design decisions
2. Go requirements and constraints
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Go specifics:
1. Current Go design decisions
2. Go requirements and constraints:
● goroutines are lightweight (1M)
● parallel and scalable
● minimal API (no hints)
● infinite stack
● handling of IO, syscalls, C calls
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A taste of Go
resultChan := make(chan Result) // FIFO queue

go func() { // start a goroutine

response := sendRequest() // blocks on IO

result := parse(response)

resultChan <- result // send the result back

}()

process(<-resultChan) // receive the result
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How can we implement this?
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Thread per goroutine?
Would work!

But too expensive:

● memory (at least 32K or so)
● performance (syscalls)
● no infinite stacks
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Thread pool?
Only faster goroutine creation.

But still:
● memory consumption
● performance
● no infinite stacks
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M:N Threading
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- cheap
- full control

Goroutine States
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Simple M:N Scheduler

MUTEX

Scheduler
Runnable Goroutines (Run Queue)
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Blocked Goroutines
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Blocked Goroutines
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Blocked Goroutines
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The same mechanism for:
● Mutexes
● Timers
● Network IO
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System Calls
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System Calls
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System Calls
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#Threads > #Cores
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√ lightweight goroutines

√ handling of IO and syscalls

√ parallel



Not Scalable!

MUTEX

Scheduler
Runnable Goroutines (Run Queue)
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lock-free?
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lock-free?

⛔
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Distributed Scheduler
Per-thread state
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Distributed Scheduler
Per-thread state
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Poll Order
Main question: what is the next goroutine to run?

1. Local Run Queue
2. Global Run Queue
3. Network Poller
4. Work Stealing
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Work Stealing

Per-thread state
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√ lightweight goroutines

√ handling of IO and syscalls

√ parallel

√ scalable



Threads in syscalls :(
(#threads > #cores)
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M:P:N Threading 
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M:P:N Threading
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Distributed 3-Level Scheduler
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Syscall handling: Handoff
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Syscall handling: Handoff
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√ lightweight goroutines

√ handling of IO and syscalls

√ parallel

√ scalable

√ efficient



Fairness
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Fairness
What: if a goroutine is runnable, it will run eventually.

Why:

● bad tail latencies
● livelocks
● pathological behaviors
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Fairness
What: if a goroutine is runnable, it will run eventually.

Why:

● bad tail latencies
● livelocks
● pathological behaviors

Fairness is like Oxygen
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Fair Scheduling
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Fair: FIFO Run Queue
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Not Fair: LIFO Run Queue

Fair Scheduling
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Fair: FIFO Run Queue
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Fairness/Performance Tradeoff
● Single Run Queue does not scale
● FIFO bad for locality

Want a minimal amount of fairness!
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Infinite Loops
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Infinite Loops

Solution: preemption (~10ms)
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Local Run Queue

FIFO
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Local Run Queue

FIFO 1-element LIFO buffer
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Local Run Queue

FIFO 1-element LIFO buffer
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Local Run Queue

FIFO 1-element LIFO buffer
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● better locality
● restricts stealing (3us)



Local Run Queue Starvation

FIFO
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Time Slice Inheritance
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Global Run Queue Starvation

Local Run Queue

Global Run Queue
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Global Run Queue Starvation

g = pollLocalRunQueue()
if g != nil {

return g
}
return pollGlobalRunQueue()
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Global Run Queue Starvation
schedTick++
if schedTick%61 == 0 {

g = pollGlobalRunQueue()
if g != nil {

return g
}

}
g = pollLocalRunQueue()
if g != nil {

return g
}
return pollGlobalRunQueue()
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Why 61?
It is not even 42!     ¯\_(ツ)_/¯

Want something:
● not too small
● not too large
● prime to break any patterns
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Network Poller Starvation

Global/Local Run Queue

Network Poller
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Network Poller Starvation

Global/Local Run Queue

Network Poller
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Fairness Hierarchy

Goroutine - preemption

Local Run Queue - time slice inheritance

Global Run Queue - check once in a while

Network Poller - background thread

= minimal fairness at minimal cost
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Stacks
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Function Frame

● local variables
● return address
● previous frame pointer
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void foo()
{

...
int x = 42;
...
return;

}



Thread Stack
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Thread Stack
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Thread Stack
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Stack Implementation
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Stack (1-8 MB)
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protected not paged-in paged-in



Stack is cheap!
foo:
sub    $64, %RSP // allocate stack frame of size 64
...
mov    %RAX, 16(%RSP) // store to a local var
...
add    $64, %RSP // deallocate stack frame
retq
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Paging-based infinite stacks?
● Lazy page-in
● 64-bit Virtual Address Space

Can we build "infinite" stacks based on this?
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What is infinite?

1GB is "infinite" enough
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Paging won't work :(
● Not enough Address Space

○ 48 bits address space
○ 1 bit for kernel = 47 bits = 128TB
○ max 128K stacks
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Paging won't work :(
● Not enough Address Space

○ 48 bits address space
○ 1 bit for kernel = 47 bits = 128TB
○ max 128K stacks

● Bad granularity
○ 4KB x 1M = 4GB

● Slow "page-out"
● No huge pages (2MB, 1GB)
● 32-bit systems

○ ARM
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Normal stack again
foo:

sub    $64, %RSP
...
mov    %RAX, 16(%RSP)
...
add    $64, %RSP
retq
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Goroutine stacks
foo:
mov    %fs:-8, %RCX // load G descriptor from TLS
cmp    16(%RCX), %RSP // compare the stack limit and RSP
jbe    morestack // jump to slow-path if not enough stack
sub    $64, %RSP
...
mov    %RAX, 16(%RSP)
...
add    $64, %RSP
retq
...
morestack: // call runtime to allocate more stack
callq  <runtime.morestack>
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Function Prologue

void foo()
{

if (RSP < TLS_G->stack_limit)
morestack();

...
}
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Split Stack
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Split Stack

106

mainfoo

Stack segment (1KB)

RSPlimit



Split Stack Benefits
● 1M goroutines
● works on 32-bits
● good granularity
● cheap "page-out"
● huge pages
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"Hop Split" Problem :(

for ... { // hot loop

    foo() // causes stack split
}
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Important Performance Characteristics
1. Transparent
2. Stable

"Hot Split" problem fail both.
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Growable Stack
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Growable Stack
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Growable Stack
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Growable Stack
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Growable Stack
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Growable Stack
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Stack Performance
Split Stack

● O(1) cost per function call
● repeated

Worst case: stack split in hot loop
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Stack Performance
Split Stack

● O(1) cost per function call
● repeated

Worst case: stack split in hot loop

Penalizing cheap operation a bit
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Growable Stack

● O(N) cost per function call
● amortized

Worst case: growing stack for short goroutine

Penalizing expensive operation significantly<



Stack Cache
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Interesting Fact

Split stacks are in gcc:

$ gcc -fsplit-stack prog.c
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Preemption
What: Asynchronously asking a goroutine to yield.

Why:

● multiplexing multiple goroutines
● auxiliary functions (GC, crashes)
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Preemption
What: Asynchronously asking a goroutine to yield.

Why:

● multiplexing multiple goroutines
● auxiliary functions (GC, crashes)

Preemption is also like Oxygen
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Implementation strategy
Signals:

+ Fast
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- GC stack/register maps
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Cooperative checks:

+ OS-independent

+ non-preemptible regions

+ GC stack/register maps

- Slow (1-10%)

⛔



Function Prologue
foo:
mov    %fs:-8, %RCX // load G descriptor from TLS

cmp    16(%RCX), %RSP // compare the stack limit and RSP

jbe    morestack // jump to slow-path if not enough stack

...
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Spoof stack limit!

G->stackLimit = 0xfffffffffffffade
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Function Prologue
foo:
mov    %fs:-8, %RCX

cmp    16(%RCX), %RSP // guaranteed to fail!

jbe    morestack

...
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Advantages

+ fast

+ portable

+ simple

+ GC-friendly
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Advantages

+ fast

+ portable

+ simple

+ GC-friendly

- loops
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Recap
√ lightweight goroutines

√ handling of IO and syscalls

√ parallel

√ scalable

√ efficient

√ fair

√ infinite stacks

√ preemptible*
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Thank you!

Q&A

Dmitry Vyukov, dvyukov@google.com
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