
Go scheduler
Implementing language with lightweight concurrency

Dmitry Vyukov, dvyukov@gmail.com
Hydra conf, July 12 2019 1

Agenda
● Go specifics
● Scheduler
● Scalability
● Fairness
● Stacks
● Future

2

What is a goroutine?
Logically a thread of execution.

Logically same as:
● OS thread
● coroutine
● green thread

3

Most material is generic
... and to large degree applicable to:

● OS thread schedulers
● Coroutine schedulers
● Thread pools
● Other languages

4

Go specifics:
1. Current Go design decisions
2. Go requirements and constraints

5

Go specifics:
1. Current Go design decisions
2. Go requirements and constraints:
● goroutines are lightweight (1M)

6

Go specifics:
1. Current Go design decisions
2. Go requirements and constraints:
● goroutines are lightweight (1M)
● parallel and scalable

7

Go specifics:
1. Current Go design decisions
2. Go requirements and constraints:
● goroutines are lightweight (1M)
● parallel and scalable
● minimal API (no hints)

8

Go specifics:
1. Current Go design decisions
2. Go requirements and constraints:
● goroutines are lightweight (1M)
● parallel and scalable
● minimal API (no hints)
● infinite stack

9

Go specifics:
1. Current Go design decisions
2. Go requirements and constraints:
● goroutines are lightweight (1M)
● parallel and scalable
● minimal API (no hints)
● infinite stack
● handling of IO, syscalls, C calls

10

A taste of Go
resultChan := make(chan Result) // FIFO queue

go func() { // start a goroutine

response := sendRequest() // blocks on IO

result := parse(response)

resultChan <- result // send the result back

}()

process(<-resultChan) // receive the result

11

How can we implement this?

12

Thread per goroutine?
Would work!

But too expensive:

● memory (at least 32K or so)
● performance (syscalls)
● no infinite stacks

13

Thread pool?
Only faster goroutine creation.

But still:
● memory consumption
● performance
● no infinite stacks

14

M:N Threading

15

G

Thread Thread Thread Thread

G

G
G

G

G

G

G

G

G

G

G

G

G

G

N

M

- cheap
- full control

M:N Threading

16

G

Thread Thread Thread Thread

G

G
G

G

G

G

G

G

G

G

G

G

G

G

N

M
- expensive
- less control
- actual execution
- parallelism

- cheap
- full control

Goroutine States

17

G

Thread Thread Thread Thread

G

G
G

G

G

G

G

G

G

G

G

G

G

G

N

M
- expensive
- less control
- actual execution
- parallelism

running

runnable blocked

Simple M:N Scheduler

MUTEX

Scheduler
Runnable Goroutines (Run Queue)

18

G G G G

Simple M:N Scheduler

MUTEX

Scheduler
Runnable Goroutines (Run Queue)

19

G G G G

ThreadThread Thread

G G G Running Goroutines

Blocked Goroutines

20

Channel

Wait Queue G G G

Blocked Goroutines

Channel

Wait Queue G G G G

blocking

21

Blocked Goroutines

22

Channel

Wait Queue G G G G

G G G G

unblocking
Scheduler Run Queue

Blocked Goroutines

23

The same mechanism for:
● Mutexes
● Timers
● Network IO

Channel

Wait Queue G G G G

G G G G

unblocking
Scheduler Run Queue

System Calls

24

Thread

G

enter

Kernel/C code

System Calls

25

Thread

G

enter exit

Kernel/C code

System Calls

26

Thread

G

Thread

G

Thread

G

Thread

G

enter

Kernel/C code

enter enter enter

System Calls

27

Run Queue

Thread

G

G G

Thread

G

Thread

G

Thread

G

Kernel/C code

enter enter enter enter

System Calls

28

Run Queue

Thread

G

G G

Thread

G

Thread

G

Thread

G

Kernel/C code

enter

in syscall

System Calls

29

Run Queue

Thread

G

G G

Thread

G

Thread

G

Thread

G

Kernel/C code

Thread

G

enter

in syscall

System Calls

30

Run Queue

Thread

G

G G

Thread

G

Thread

G

Thread

G

Kernel/C code

Thread

G

idle

exit
G

#Threads > #Cores

31

32

√ lightweight goroutines

√ handling of IO and syscalls

√ parallel

Not Scalable!

MUTEX

Scheduler
Runnable Goroutines (Run Queue)

33

G G G G

ThreadThread Thread

G G G

lock-free?

34

lock-free?

⛔
35

36

🖥👩

37

👩

🖥
👩

👩

👩
👩

38

👩

🖥
👩

👩

👩
👩

39

👩

🖥
👩

👩

👩
👩

Shifts:

8:00 - 16:00

16:00 - 24:00

0:00 - 8:00

MUTEX

40

👩

🖥
👩

👩

👩
👩 LOCK-FREE

41

👩

🖥
👩

👩

👩
👩

🖥
🖥

🖥
🖥

DISTRIBUTED

Distributed Scheduler
Per-thread state

42

G G

ThreadThread Thread

G G G

Per-thread state

G G

Per-thread state

G

Distributed Scheduler
Per-thread state

43

G G

ThreadThread Thread

G G G

Per-thread state

G G

Per-thread state

G

Scheduler

G G

MUTEX

Distributed Scheduler
Per-thread state

44

G G

ThreadThread Thread

G G G

Per-thread state

G G

Per-thread state

G

Scheduler

G G

MUTEX

malloc cache

other caches

malloc cache

other caches

malloc cache

other caches

Poll Order
Main question: what is the next goroutine to run?

1. Local Run Queue
2. Global Run Queue
3. Network Poller
4. Work Stealing

45

Work Stealing

Per-thread state

46

G G

ThreadThread Thread

Per-thread state

G G

Per-thread state

Thread

Per-thread state

G

47

√ lightweight goroutines

√ handling of IO and syscalls

√ parallel

√ scalable

Threads in syscalls :(
(#threads > #cores)

48

M:P:N Threading

49

G

ThreadThread Thread Thread

G

G
G

G

G

G

G

G

G

G

G

G

G

G

P

M

N

ThreadThreadThread

Processor Processor ProcessorProcessor

M:P:N Threading

50

G

ThreadThread Thread Thread

G

G
G

G

G

G

G

G

G

G

G

G

G

G

P

M

running

N

ThreadThreadThread

Processor Processor ProcessorProcessor

resource required to run Go code

M:P:N Threading

51

G

ThreadThread Thread Thread

G

G
G

G

G

G

G

G

G

G

G

G

G

G

P

M

running

N

ThreadThreadThread

Processor Processor ProcessorProcessor

in syscall in syscall in syscall

in syscall

Distributed 3-Level Scheduler

52

ThreadThread Thread

G G G

"Processor"

G G

"Processor"

G

malloc cache

other caches

malloc cache

other caches

Thread

G

in syscall in syscall

Syscall handling: Handoff

53

Thread

G

"Processor"

G G

malloc cache

other caches

Syscall handling: Handoff

54

Thread

G

"Processor"

G G

malloc cache

other caches

in syscall

Syscall handling: Handoff

55

Thread

G

"Processor"

G G

malloc cache

other caches

in syscall
Thread

Syscall handling: Handoff

56

Thread

G

"Processor"

G G

malloc cache

other caches

in syscall
Thread

Syscall handling: Handoff

57

Thread

G

"Processor"

G G

malloc cache

other caches

in syscall
Thread

G

58

√ lightweight goroutines

√ handling of IO and syscalls

√ parallel

√ scalable

√ efficient

Fairness

59

Fairness
What: if a goroutine is runnable, it will run eventually.

Why:

● bad tail latencies
● livelocks
● pathological behaviors

60

Fairness
What: if a goroutine is runnable, it will run eventually.

Why:

● bad tail latencies
● livelocks
● pathological behaviors

Fairness is like Oxygen

61

Fair Scheduling

G G G G

Fair: FIFO Run Queue

62

Not Fair: LIFO Run Queue

Fair Scheduling

G G G G

G G G G

Fair: FIFO Run Queue

63

Fairness/Performance Tradeoff
● Single Run Queue does not scale
● FIFO bad for locality

Want a minimal amount of fairness!

64

Infinite Loops

65

G

in infinite loop

Infinite Loops

66

G G

in infinite loop starved

Infinite Loops

Solution: preemption (~10ms)

67

G G

in infinite loop starved

Local Run Queue

FIFO

68

G G G G

Local Run Queue

FIFO 1-element LIFO buffer

69

GG G G G

Local Run Queue

FIFO 1-element LIFO buffer

70

GG G G G

● better locality

Local Run Queue

FIFO 1-element LIFO buffer

71

GG G G G

● better locality
● restricts stealing (3us)

Local Run Queue Starvation

FIFO

72

GG G G G

G

G

1-element LIFO buffer

Time Slice Inheritance

73

G

G

G

1-element LIFO buffer

Solution: inherit time slice -> looks like infinite loop -> preemption (~10ms)

Global Run Queue Starvation

Local Run Queue

Global Run Queue

74

G G

G

Global Run Queue Starvation

g = pollLocalRunQueue()
if g != nil {

return g
}
return pollGlobalRunQueue()

75

Global Run Queue Starvation
schedTick++
if schedTick%61 == 0 {

g = pollGlobalRunQueue()
if g != nil {

return g
}

}
g = pollLocalRunQueue()
if g != nil {

return g
}
return pollGlobalRunQueue()

76

Why 61?
It is not even 42! ¯_(ツ)_/¯

Want something:
● not too small
● not too large
● prime to break any patterns

77

Network Poller Starvation

Global/Local Run Queue

Network Poller

78

G G

G

Network Poller Starvation

Global/Local Run Queue

Network Poller

79

G G

G

Solution: background thread poll network occasionally

Fairness Hierarchy

Goroutine - preemption

Local Run Queue - time slice inheritance

Global Run Queue - check once in a while

Network Poller - background thread

= minimal fairness at minimal cost
80

Stacks

81

Function Frame

● local variables
● return address
● previous frame pointer

82

void foo()
{

...
int x = 42;
...
return;

}

Thread Stack

83

main

Stack

grows down

Thread Stack

84

mainfoo

Stack

grows down

Thread Stack

85

mainfoobar

Stack

grows down

Thread Stack

86

mainfoo

Stack

grows down

Thread Stack

87

mainfoo

Stack

stack pointer (RSP)

Thread Stack

88

mainfoo

local/temp variablesreturn
address

prev
frame ptr

Stack

stack pointer (RSP)

Stack Implementation

89

Stack (1-8 MB)

page (4K)page (4K)page (4K)page (4K)page (4K)page (4K)page (4K)

protected not paged-in paged-in

Stack is cheap!
foo:
sub $64, %RSP // allocate stack frame of size 64
...
mov %RAX, 16(%RSP) // store to a local var
...
add $64, %RSP // deallocate stack frame
retq

90

Paging-based infinite stacks?
● Lazy page-in
● 64-bit Virtual Address Space

Can we build "infinite" stacks based on this?

91

What is infinite?

1GB is "infinite" enough

92

Paging won't work :(
● Not enough Address Space

○ 48 bits address space
○ 1 bit for kernel = 47 bits = 128TB
○ max 128K stacks

93

Paging won't work :(
● Not enough Address Space

○ 48 bits address space
○ 1 bit for kernel = 47 bits = 128TB
○ max 128K stacks

● Bad granularity
○ 4KB x 1M = 4GB

94

Paging won't work :(
● Not enough Address Space

○ 48 bits address space
○ 1 bit for kernel = 47 bits = 128TB
○ max 128K stacks

● Bad granularity
○ 4KB x 1M = 4GB

● Slow "page-out"

95

Paging won't work :(
● Not enough Address Space

○ 48 bits address space
○ 1 bit for kernel = 47 bits = 128TB
○ max 128K stacks

● Bad granularity
○ 4KB x 1M = 4GB

● Slow "page-out"
● No huge pages (2MB, 1GB)

96

Paging won't work :(
● Not enough Address Space

○ 48 bits address space
○ 1 bit for kernel = 47 bits = 128TB
○ max 128K stacks

● Bad granularity
○ 4KB x 1M = 4GB

● Slow "page-out"
● No huge pages (2MB, 1GB)
● 32-bit systems

○ ARM

97

Normal stack again
foo:

sub $64, %RSP
...
mov %RAX, 16(%RSP)
...
add $64, %RSP
retq

98

Goroutine stacks
foo:
mov %fs:-8, %RCX // load G descriptor from TLS
cmp 16(%RCX), %RSP // compare the stack limit and RSP
jbe morestack // jump to slow-path if not enough stack
sub $64, %RSP
...
mov %RAX, 16(%RSP)
...
add $64, %RSP
retq
...
morestack: // call runtime to allocate more stack
callq <runtime.morestack>

99

Function Prologue

void foo()
{

if (RSP < TLS_G->stack_limit)
morestack();

...
}

100

Split Stack

101

main

Stack segment (1KB)

RSPlimit

Split Stack

102

mainfoo

Stack segment (1KB)

RSPlimit

Split Stack

103

mainfoo

Stack segment (1KB)

bar

RSP limit

Split Stack

104

mainfoo

Stack segment (1KB)

RSPlimit

Stack segment (1KB)

Split Stack

105

mainfoo

Stack segment (1KB)

bar

RSPlimit

Stack segment (1KB)

Split Stack

106

mainfoo

Stack segment (1KB)

RSPlimit

Split Stack Benefits
● 1M goroutines
● works on 32-bits
● good granularity
● cheap "page-out"
● huge pages

107

"Hop Split" Problem :(

for ... { // hot loop

 foo() // causes stack split
}

108

Important Performance Characteristics
1. Transparent
2. Stable

"Hot Split" problem fail both.

109

Growable Stack

110

main

Stack (1KB)

RSPlimit

Growable Stack

111

mainfoo

Stack (1KB)

RSPlimit

Growable Stack

112

mainfoo

Stack (1KB)

limit

bar

RSP

Growable Stack

113

mainfoo

Stack (1KB)

mainfoo

limit RSP

New Stack (2KB) COPY

Growable Stack

114

mainfoo

limit RSP

Stack (2KB)

Growable Stack

115

mainfoo

limit RSP

Stack (2KB)

bar

Growable Stack

116

mainfoo

limit RSP

Stack (2KB)

Stack Performance
Split Stack

● O(1) cost per function call
● repeated

Worst case: stack split in hot loop

117

Stack Performance
Split Stack

● O(1) cost per function call
● repeated

Worst case: stack split in hot loop

118

Growable Stack

● O(N) cost per function call
● amortized

Worst case: growing stack for short goroutine

Stack Performance
Split Stack

● O(1) cost per function call
● repeated

Worst case: stack split in hot loop

Penalizing cheap operation a bit

119

Growable Stack

● O(N) cost per function call
● amortized

Worst case: growing stack for short goroutine

Penalizing expensive operation significantly<

Stack Cache

120

"Processor"

G G

malloc cache

stack cache

other caches

Interesting Fact

Split stacks are in gcc:

$ gcc -fsplit-stack prog.c

121

Preemption
What: Asynchronously asking a goroutine to yield.

Why:

● multiplexing multiple goroutines
● auxiliary functions (GC, crashes)

122

Preemption
What: Asynchronously asking a goroutine to yield.

Why:

● multiplexing multiple goroutines
● auxiliary functions (GC, crashes)

Preemption is also like Oxygen

123

Implementation strategy
Signals:

+ Fast

124

Implementation strategy
Signals:

+ Fast

- OS-dependent

- non-preemptible regions

- GC stack/register maps

⛔
125

Implementation strategy
Signals:

+ Fast

- OS-dependent

- non-preemptible regions

- GC stack/register maps

⛔
126

Cooperative checks:

+ OS-independent

+ non-preemptible regions

+ GC stack/register maps

Implementation strategy
Signals:

+ Fast

- OS-dependent

- non-preemptible regions

- GC stack/register maps

⛔
127

Cooperative checks:

+ OS-independent

+ non-preemptible regions

+ GC stack/register maps

- Slow (1-10%)

⛔

Function Prologue
foo:
mov %fs:-8, %RCX // load G descriptor from TLS

cmp 16(%RCX), %RSP // compare the stack limit and RSP

jbe morestack // jump to slow-path if not enough stack

...

128

Spoof stack limit!

G->stackLimit = 0xfffffffffffffade

129

Function Prologue
foo:
mov %fs:-8, %RCX

cmp 16(%RCX), %RSP // guaranteed to fail!

jbe morestack

...

130

Advantages

+ fast

+ portable

+ simple

+ GC-friendly

131

Advantages

+ fast

+ portable

+ simple

+ GC-friendly

- loops

132

Recap
√ lightweight goroutines

√ handling of IO and syscalls

√ parallel

√ scalable

√ efficient

√ fair

√ infinite stacks

√ preemptible*

133

Thank you!

Q&A

Dmitry Vyukov, dvyukov@google.com
134

