
Demystifying
Bitcoin

Journey to the center of
distributed computing

Roadmap

(1) The main question

(2) The bitcoin problem

(3) The main answer

« Computing’s central challenge is how not to make a
mess of it …» E. Dijkstra

X000 implementations

P vs NP

Asynchronous vs Synchronous

? * ? = 917 * 13 = ?

« To understand a distributed computing problem:
bring it to shared memory » T. Lannister

Is payment an asynchronous problem?

The infinitely big

The infinitely small

Message Passing

p1

p2

p3

Send

Receive

Shared Memory

p1

p2

Write()

Read()

1

1

Registers

Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 1

read() - 1

Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 1

read() - 0

Non-Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 0

read() - 1

p1

p2

p3

Write(1) Ok

Read() 1

Quorums

Message Passing ó Shared Memory

p1

p2

p3

Ok

Message Passing ó Shared Memory

Read()
p4

p5

Write(1)

0

1

Read()

« Optimization is the source of all evil » D. Knuth

ó

Message Passing ó Shared Memory
Modulo Quorums

Atomicity

Wait-freedom

Payment Object

Is payment an
asynchronous problem?

Counter: Specification

A counter has two operations inc() and
read(); it maintains an integer x init to 0

read():
return(x)

inc():
x := x + 1;
return(ok)

Counter: Algorithm
The processes share an array of registers
Reg[1,..,N]
inc():

Reg[i].write(Reg[i].read() +1);
return(ok)

read():
sum := 0;
for j = 1 to N do

sum := sum + Reg[j].read();
return(sum)

Counter*: Specification

Counter* has, in addition, operation dec()

dec():
if x > 0 then x := x - 1; return(ok)
else return(no)

Can we implement Counter*
asynchronously?

Agreement on a single value among multiple
Safety: No two processes must choose different values.

The chosen value must have been proposed by a process.
Liveness: Each process must eventually choose a value.

Consensus

2-Consensus with Counter*

§ Registers R0 and R1 and Counter* C - initialized to 1

§ Process pI:
§ propose(vI)
§ RI.write(vI)
§ res := C.dec()
§ if(res = ok) then

ü return(vI)
ü else return(R{1-I}.read())

Impossibility [FLP85,LA87]

§ Corollary: no asynchronous algorithm implements
Counter* among two processes using registers

§ Theorem: no asynchronous algorithm implements
consensus among two processes using registers

§ The consensus number of an object is the maximum
number of processes than can solve consensus with it

Roadmap

(1) The main question

(2) The bitcoin problem/object

(3) The main answer

Payment Object (PO): Specification

Pay(a,b,x): transfer amount x from a to b if a > x
(return ok; else return no)

Important. Only the owner of a invokes Pay(a,*,*)

§ Questions:
§ - can PO be implemented asynchronously?
§ - what is the consensus number of PO?

Snapshot: Specification

A snapshot has operations update() and
scan(); it maintains an array x of size N

scan():
return(x)

update(i,v):
x[i] := v;
return(ok)

Algorithm?

The processes share one array of N registers
Reg[1,..,N]
scan():

for j = 1 to N do
x[j] := Reg[j].read();

return(x)
update(i,v):

Reg[i].write(v); return(ok)

Atomicity?

p1

p2

p3

update(1,1) - ok

scan() - [1,0,2]

update(3,2) - ok

Atomicity?

p1

p2

p3

scan() - [0,0,10]

update(2,1) - ok

update(3,10) - ok

Key idea for atomicity

To scan, a process keeps reading the entire snapshot
(i.e., collecting), until two arrays are the same

To update, scan then write the value and the scan

To scan, a process keeps collecting and returns a
collect if it did not change, or some collect returned
by a concurrent scan

Key idea for wait-freedom

The Payment Object: Algorithm

Every process stores the sequence of its outgoing
payments in its snapshot location

To pay, the process scans, computes its current
balance: if bigger than the transfer, updates and
returns ok, otherwise returns no
To read, scan and return the current balance

PO can be implemented
asynchronously

Consensus number of PO is 1

Consensus number of PO(k) is k

ó

Message Passing ó Shared Memory
Modulo Samples

Roadmap

(1) The main question

(2) The bitcoin problem/object

(3) The main answer

Payment System (AT2)

AT2_S
AT2_D

AT2_R

Number of lines of code: one order of magnitude less

« The price of software reliability is the pursuit of
the utmost simplicity » T. Hoare

References

(1) The Consensus Number of a Cryptocurrency – ACM
PODC 2019– Guerraoui et al

(2) Scalable Byzantine Reliable Broadcast - DISC 2019
- Guerraoui et al

(3) Online Payments by Mereley Broadcasting
Messages IEEE DSN 2020 - Collin et al

Journey to the center
of distributed computing

Blockchain

Bitcoin

Ethereum

Proof of work

Smart contracts
Consensus

Secure Broadcast

Atomicity

Wait-freedom

Quorums

Snapshot

