Demystifying
Bitcoin

“
.
°
- . - -
a
- L] o o = 4
< 9
.
- - ..
& .
o @ .
>
K3
. =
. -
-
. .
. -
. -
e
ity

Journey to the center of
distributed computing

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcomn org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial mstitution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed. but oroof that it came from the largest nool of CPU power. As

Roadmap

(1) The main question
(2) The bitcoin problem

(3) The main answer

~ X000 implementations

~ « Computing’s central challenge is how not to make a
mess of it ...» E. Dijkstra

YOU SEE, INTHIS
WORLD, THERE'S *

.
€ - L

o

~. Ao - _TWOKINDS OF

PEOPlE MY FRIEND:

Pvs NP

TR e Rl O

Asynchronous vs Synchronous

Is payment an asynchronous problem?

« To understand a distributed computing problem:
bring it to shared memory » T. Lannister

The infinitely big

=
DD

tEReEed

Message Passing

Send

pITV

p2

p3 \ /
Receive

Shared Memory

Write() 1

N

Registers

N

Read() 1

p2

Atomic Shared Memory

write (l) - ok

Atomic Shared Memory

write (l) - ok

Non-Atomic Shared Memory

write (l) - ok

Message Passing <> Shared Memory

Write(1)

\/

p3 /\

Read()

Quorums

Me
SSa
ge P
assi
ing < Sh
ared
Me
mo
ry

ol Write(1)
p2
p3
p4 / Ok
Read() \ /
1

LN

P
Read()
0

Message Passing <> Shared Memory
Modulo Quorums

« Optimization is the source of all evil » D. Knuth

Is payment an
asynchronous problem?

Payment Object

Atomicity

"Wait-freedom

Counter: Specification

A counter has two operations /n¢() and
read(); it maintains an integer x /nit to 0

read():
return(x)

nc():
X:i=X+1;
return(ok)

Counter: Algorithm

The processes share an array of registers
Reg[1,..,N]

nc():
Reg[i].write(Reg[i].read() +1);
return(ok)
read().
sum := 0;
forj=1toNdo
sum := sum + Req[j].read();
return(sum)

Counter*: Specification

Counter* has, in addition, operation dec()

dec():
if x > 0 then x := x - 1; return(ok)
else return(no)

Can we implement Counter*
asynchronously?

Consensus

J Bad) '
planl | Myld arth J J lIove ,
' + ‘-,x first! won't 1 wmterl »
a pprove "

7 T‘
e
” .L

Agreement on a single value among multiple

4)
Safety: No two processes must choose different values.

The chosen value must have been proposed by a process.

KLiveness: Each process must eventually choose a value. y

2-Consensus with Counter*

« Registers RO and R1 and Counter* C - initialized to 1

= Process pl.:
propose(VI)
RI.write(vI)
res := C.dec()
if(res = ok) then
v return(vI)
v else return(R{1-I}.read())

Impossibility [FLP85,LA87]

« Theorem. no asynchronous algorithm implements

consensus among two processes using registers

« Corollary: no asynchronous algorithm implements
Counter* among two processes using registers

- The consensus number of an object is the maximum
number of processes than can solve consensus with it

:"::-»123 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18
U He
a |E HHHBHE
» [AR EEE
d HEEERBREEAEEEEEEEE
3 EEE R REEEEFEEERBERE
3 [HEWE H R HEE R EEEE B R E
7 [)))) e) e e e o]
jE B R EE B
(3R] 030) %) k8] 26 L&a) (3] 2)l o] 8] 22

Roadmap

(1) The main question
(2) The bitcoin problem/object

(3) The main answer

Payment Object (PO): Specification

Pay(a,b,x): transfer amount x fromato b if a > X
(return ok; else return no)

Important. Only the owner of a invokes Pay(a,*,*

« Questions:
» - can PO be implemented asynchronously?
« - what is the consensus number of PO?

Snapshot: Specification

A snapshot has operations update() and
scan();, it maintains an array x of size NV

scan():
return(x)

upaate(i,v):
X[1] =V,
return(ok)

Algorithm?

" The processes share one array of N registers
Reg[1,..,N]

scan():
“forj=1toNdo
X[j] := Reg[j]l.read();
return(x)
upaate(i,v):
- Reqg[i].write(v); return(ok)

Atomicity?

update (1,1) - ok

update (3,2) - ok

p—— T

Atomicity?

scan () - [0,0,10]
S E—
update (2,1) - ok

p—ft——t—

update (3,10) -ok

—————— 1

Key idea for atomicity

To scan, a process keeps reading the entire snapshot
(i.e., collecting), until two arrays are the same

Key idea for wait-freedom

To update, scan then write the value and the scan

To scan, a process keeps collecting and returns a

collect if it did not change, or some collect returned
by a concurrent scan

The Payment Object: Algorithm

Every process stores the sequence of its outgoing
payments in its snapshot location

To pay, the process scans, computes its current
balance: if bigger than the transfer, updates and
returns ok, otherwise returns no

To read, scan and return the current balance

PO can be implemented
asynchronously

Consensus number of PO is 1

Consensus number of PO(Kk) is k

Message Passing <> Shared Memory
Modulo Samples

i

N

&

Roadmap

(1) The main question
(2) The bitcoin problem/object

(3) The main answer

Payment System (AT2)

AT2_S
AT2_D
AT2_R

« The price of software reliability is the pursuit of
the utmost simplicity » T. Hoare

Number of lines of code: one order of magnitude less

References

" (1) The Consensus Number of a Cryptocurrency — ACM
PODC 2019- Guerraoui et al

(2) Scalable Byzantine Reliable Broadcast - DISC 2019
- Guerraoui et al

(3) Online Payments by Mereley Broadcasting
Messages IEEE DSN 2020 - Collin et al

Journey to the center
of distributed computing

B Christian Cachin

aaaaaaaaaaaaaaa

Bitcoin i Atomicity
Blockchain [Wait-freedom
Programming
B GORiTHMS Snapshot
Proof Of WOrk FOR CONCURRENT
Consensus
Smart contracts
Quorums

Ethereum Secure Broadcast

