
1 | Copyright © 2018 Criteo

Kevin Gosse @kookiz

Extend the New
Windbg to Build
Your Own Dream
Debugging Tool

3 | Copyright © 2018 Criteo

4 | Copyright © 2018 Criteo

5 | Copyright © 2018 Criteo

6 | Copyright © 2018 Criteo

Shiny new UI

New features for native debugging (time travel debugging)

Single window editor

No history

Cryptic scripting

How many times have you typed .loadby sos clr?

A new WinDBG, with the same flaws

7 | Copyright © 2018 Criteo

As a rule of thumb, if an application has a ribbon, it is very likely written
in .NET

Any .NET application can be hacked with reasonable effort (custom
loader, replacing assemblies, editing the IL, …)

But something has changed!

8 | Copyright © 2018 Criteo

Searching for extension points

9 | Copyright © 2018 Criteo

[Export] A class marked with that attribute will be added to MEF’s
“catalog”

[Import] When marking a field with this attribute, MEF will try to
find a matching type in its catalog and assign it

MEF in a nutshell

10 | Copyright © 2018 Criteo

WinDbgX is a .NET/WPF application

It uses MEF-based composition

It has an undocumented API to write user extensions

What we discovered so far

11 | Copyright © 2018 Criteo

Disclaimer

12 | Copyright © 2018 Criteo

DbgX.Interfaces.dll: interfaces to extend the UI

DbgX.Interfaces.Internal.dll: interfaces to extend the UI or interact with
the application/debugger

Finding interfaces

13 | Copyright © 2018 Criteo

.\Extensions: Only loads DbgX.*.dll files. Restrictive permissions

%LOCALAPPDATA%\DBG\UIExtensions: Loads any dll files

Storing extensions

14 | Copyright © 2018 Criteo

When clicked, execute .loadby sos clr

After command is executed (by the button or by the user), gray-out the
button

Extension 1: button to load SOS

15 | Copyright © 2018 Criteo

WinDbgX uses the FluentRibbon library

First, create your ribbon control as you normally would

Then, implement and export IDbgRibbonTabGroupExtension to expose
the button to WinDbgX

RibbonTabGroupExtensionMetadata allows you to decide in what
tab/group your button should be put

Step 1: Adding a button to the
ribbon

16 | Copyright © 2018 Criteo

Import the IDbgConsole interface

ExecuteLocalCommandAsync: send a command to the debugger

ExecuteCommandAsync: try first to interpret as a WinDbg command (for
example: .hh), then forward to the debugger

Execute(Local)CommandAndCaptureOutputAsync: execute the command but
return the output instead of displaying it

PrintTextToConsole

Step 2: Executing a command

17 | Copyright © 2018 Criteo

Implement and export the IDbgCommandExecutionListener interface

OnCommandExecuted is called with the exact command executed

Step 3: Listening to commands

18 | Copyright © 2018 Criteo

Know when the command can be executed

IDbgEngineState gives the state of the debugging engine, so that we
know if we can actually execute commands

Step 4: (bonus) Monitoring
debugging engine state

19 | Copyright © 2018 Criteo

Log every command typed and their output

Open the result of a command in a new window

Use that window as an editor

Extension 2: Command history

20 | Copyright © 2018 Criteo

21 | Copyright © 2018 Criteo

Make a control inheriting from ToolWindowView

Implement IDbgToolWindow and return the control in the
GetToolWindowView method

Use NamedPartMetadata("CommandHistoryWindow") to expose the
toolwindow

Import the IDbgToolWindowManager and use OpenToolWindow to
open the toolwindow

Step 1: Opening a toolwindow

22 | Copyright © 2018 Criteo

Implement IDbgDmlOutputListener

OnDmlOutput: called with the output of the command

OnCommandCompletion: called when the command is finished

Step 2: Capturing the output of the
commands

23 | Copyright © 2018 Criteo

Write scripts in C# directly from WinDbg

Execute them in the debugger with ClrMD

Extension 3: C# scripting

24 | Copyright © 2018 Criteo

The WinDbg process model

UI

DbgX.Shell.exe
(Any CPU)

Debugging engine

EngHost.exe
(x86)

Debugging engine

EngHost.exe
(x64)

Named pipes

commands

output

25 | Copyright © 2018 Criteo

- Add a button in the ribbon: IDbgRibbonTabGroupExtension

- When clicked, display a text editor: IDbgToolWindowManager

Step 1: The C# editor

26 | Copyright © 2018 Criteo

- ClrMD needs to run with same bitness as target

- Get information on the target: IDbgTargetQuery

- IsPointer64BitAsync: returns true if target is 64 bits

Step 2: Find the bitness

27 | Copyright © 2018 Criteo

- Load the custom Windbg commands extension: IDbgConsole

console.ExecuteLocalCommandAndCaptureOutputAsync(
$".load C:\WindbgScriptRunner{bitness}.dll");

Step 3: Load the extension into the
debugger

DbgX.Shell.exe EngHost.exe

WindbgScriptRunner

28 | Copyright © 2018 Criteo

- Save the script in a temporary .cs file

- Give the path to the extension:

console.ExecuteCommandAndCaptureOutputAsync(
$"!compileandrun {file}");

Step 4: Save the file and call the
custom command

DbgX.Shell.exe EngHost.exe

WindbgScriptRunner

29 | Copyright © 2018 Criteo

- Compile the C# code file:
Microsoft.CSharp.CSharpCodeProvider

- Initialize the ClrHeap object in ClrMD: see Christophe Nasarre’s talk!

Step 5: Compile and execute

DbgX.Shell.exe EngHost.exe

WindbgScriptRunner

30 | Copyright © 2018 Criteo

Still waiting for Microsoft to communicate on the extension points

Start today, write your own extensions

Demonstrate the use-case so that the extension points can be designed
properly

Maybe someday an extension store?

What’s next?

31 | Copyright © 2018 Criteo

Github: https://github.com/kevingosse/windbg-extensions/

• Source code of the three extensions, with more features

• Link to blog articles for additional info

• Twitter: @kookiz

Additional resources

https://github.com/kevingosse/windbg-extensions/

