A DEEP DIVE INTO A DATABASE ENGINE INTERNALS

OREN EINI

OREN@RAVENDB.NET

STRUCTURE

® Part |:Internal structure
= Part 2: Durability
® Part 3:Transactions & Concurrency

® Part 4:Tricks & Optimizations

| BUILD DATABASES FOR A LIVING

= |nterview question:

® Build a persistent phone book

m Database is a black box, full of magic

WHAT CONSTITUTE A DATABASE?

m Store and retrieve data

® Format of the data
u Resource management

® Transactions

= ACID

® Query engine

SECETION LOOKING FAST

LET’S BUILD A DATABASE

® What do we need for a phone book application?

Name

Allison Neu
Bob Newhall
Canine College

Canine Therapy

Phone

555-8396
555-4344
555-7201
555-2849

CSV FOR THE WIN!!!

= Easy to work with = How do you search?

= Human readable = O(N)

= How do you modify a record?

= Rewrite the whole file

IN MEMORY ALGORITHMS BADLY SUITED FOR PERSISTENCE

Latency (4KB read)

m Sorted data structures:

= AVL Tree DRAM 50 nanoseconds
= Skip Lists NVMe |00 microseconds
(Optane) 100,000 nanoseconds
SSD 500 microseconds
" OflogN) (Kingston) 500,000 nanoseconds
= Optimal * Hard Disk 8 milliseconds

8,000,000 nanoseconds

= ¥ Assuming same access speed for each datum

SEEK TIME DOMINATES PERSISTENT DATA STRUCTURES

. Oflog2N) (Iog2N) (SSD) | (HDD)

= But what is N? 1,000 5ms 80 ms
1,000,000 20 I0ms 800 ms

= Random read

m |et’s do the math...

BATCH ACCESS TO MEMORY: PAGES

® Internal space management in the file
m Divide to pages (common 4KB — 4MB)
m Pages are loaded to memory as a single unit

= Modified in memory

® Locality of reference as a core concept

DISK OPTIMIZED ALGORITHM: B+TREE

= Seeks are expensive, so let’s avoid them.
® Bring many results in one disk seek.
m Costis now (O(logF N) + O(log2 F))

= Where F is fill factor

m Assume Fis 100

m Searching in page is free

Count Search time Seeks
(logl 00 N) (SSD)
1,000,000 3 2 ms
1,000,000,000 5 4 ms

Page #1

T peo N
Page: 2

Branch

Entries: 4

Avl Space: 4,024
—

g p ™\
(It 102) / to page 0

102/ to page 1

200 / to page 4

316 /to page 6
N

—_—4—/—_—_\\-——\

316

The Ubiquitous B-Tree - 1979

It 102)

102

200

Page =6

e . N
Page: 6

Leaf

Enfries: 196

Avl Space: 383

... 50 keys redacted ...
... 50 keys redacted ...

... 50 keys redacted ...

Enhies:
316 - Size 3

366 - Size 3
416 - Size 3

466 - Size 3

Page =0

Page: 0

Page &4

4 . N
Page: 4

Leaf
Entries: 107

Avl Space: 2,161

Page =1

s . ™
Page: 1

Leaf
Enties: 107

Avl Space: 2,161

Leaf

Entries: 102

Avl Space: 2,251
— S

Entries:
200 - Size 3
... 50 keys redacted ...
159 - Size 3
... 30 keys redacted ...
309 - Size 3

Entfries:
1021 - Size 3
... 50 kevs redacted ...
152 - Size 3
... 50 keys redacted ...
202 - Size 3

Enfries:
0 - Size 3

... 50 keys redacted .

50 - Size 3

... 530 keys redacted ...

100 - Size 3

MEMORY HIERARCHY 1,000,000

1,000,000,000 5 40 ms

ranous | 2

= B@

P, P, v P,
| Level | | Level | | Level |

Level 2 Level 2 Level 2 !L el 2 ;2 ' M ' !L el 2 !
eve evel eve ! Level 3 ! Level 3 ! evel 3 ! Level 3 ! Level 3

Level 4

(7]
E
(@)
h.ﬂ

Level 4 | § Level 4 | § Level 4 | §l Level 4 eve Level 4 | ff Level 4 | § Level 4 | |}l Level 4

e

Level 4 eve Level 4 | f§ Level 4 | § Level 4

Cache: |128MB

WHAT IS A PAGE SPLIT? 1/2

il Able

Brett Brett

Cannes Cannes

Derek Derek

22 Erik

Frank Frank

George Hanna George

Name

Hanna

6 x empty

WHAT IS PAGE SPLIT? 2/2

Able
Able Ben
Brett Brett
Cannes Cannes
Derek 2 x empty
Erik
Frank m
George Derel Derek
Erik
Frank
George

2 x empty

THE IMPORTANCE OF ORDER

Al,B2 Cl1,D2 EI,E2 FI, F2

l Root \ AlLA2BI B2 C2DI D2
l AB,C \ l D,EF \
l Al,A2 \l BI,B2 \l Cl,C2 \lDl,DZ,\l El,E2 \l FI,F2 \

WHAT DO YOU PUT IN THE B+TREE!?

@ H (U] g@@ [F?@@ﬂ 20 Email,Name, etc (Cannes)

31 Email,Name, etc (Able)
55 Email,Name, etc (Brett)

' \ 80 Email,Name, etc (Derek)
C
m r_] l AHEEID \
l Able (31) \ ' Brett(55) \ lCannes(ZO)\ ' Derek(80) \
l Able (email, \ l Brett (email, \ lCannes(emall \ l Derek(email, \
name, etc) name, etc) name, etc) name, etc)

Embedded data References

DEALING WITH LARGE VALUES...

® Overflow — If value too big to put in B+Tree page
m Allocate N pages to fit it.

m Record pointer to it from B+Tree

Root

I S
l Large Value
A,B,C
1

l Al,A2 \ l LargeValue JI

THE STRUCTURE OF A B+TREE PAGE

Slotted pages

Page Number (4 byte)

Page Flags (1 byte)

Lower Offset (2 bytes)
Page Count [4 bytes)

Upper Offset (2 bytes)

Offset to 2™ entry (2 bytes) -A

Offset to 1** entry (2 bytes) - B

Offset to 3™ entry (2 bytes) — D

Free Space

Entry #3 (variable length)

Entry #2 (variable length)

Entry #1 (variable length)

B+TREE IS A SORTED DATA STRUCTURE

= What can we do with it?

= Find by key
= Find by prefix
= Find by range

G

Clustered!?

Byld(123)

Read inline
data

Load
related

SELECT FROM Users ORDER BY Registered DESC, Name ASC

——
EECCSMILECCSERIE Secn [D EC

2021-03-2 Ermily 49 For each record: Load via rowid
2021-03-20 Able 58
2021-03-20 George 84
2021-03-19 Derek 98

index_cmp(x, y):
a = cmp(x.Registred, y.Registered) * -1
if a I'= 0:

return a

return cmp(x.Name, y.Name)

WHAT IS rowid?

Logical Physical
= Numeric value that represent the row ® Physical location on disk
= O(logN) = O(l)

SELECT FROM Users ORDER BY Registered DESC, Name ASC

= O(N * logN) = ON*1)

REAL VWORLD SCENARIO: UBER https://leng.uber.com/postgres-to-mysql-migration/

Primary Index Secondary Index

1 2 3 4 A B | C | D

Secondary Index | A B C D

>< l l Disk | I NI Il
76 103 107 211

Primary Index 1 2 3 4

e N

76 103 107 211

Disk

WHAT CAN THE DATABASE OPTIMIZE?

= Find by key
= Find by prefix
= Find by range

m Scan by primary key / secondary key
(if there is an index)

m All else: COMPUTE!

L —

A m A =B L y—
_— R TTET

e k- — s —D000E0
TT11).

1211
—lﬂbll

PART 2: DURABILITY

DURABILITY

m Disks sucks

= Alot

® They suck a lot and are horrible
= Yes, SSD too
= Yes, NVMe too

= Also, everything you know about /O is a lie

LATENCY NUMBERS...

m LI reference - | nanosecond

= NVMe Read — 100 microseconds (10,000 nanoseconds)
= SSD Read — 300 microseconds (30,000 nanoseconds)

= HDD Read — 8 milliseconds (8,000,000 nanoseconds)

® On Cloud —Assume latency is x5 worse

https://www.marvell.com/content/dam/marvell/en/public-
collateral/fibre-channel/marvell-fibre-channel-nvme-over-fabrics-
white-paper.pdf

WHAT IS THE ISSUE?

bool write_1(const char* file, void* data, size_t 1len)

{

int fd = open(file, O CREATE | S _IRWXU | O RDWR);
if(fd < ©)

return false;
ssize t ret = write(fd, data, len);

close(fd);
return ret 1= -1;

I'T’S BUFFERS ALL THE WAY DOWN...

User Buffer

OS Buffer
FS Buffer

Drive Buffer
Disk Buffer

Write 9 PerSiStent Persistent
> 30 seconds

USE FYSNC?

bool write 1(const char* file, void* data, size t len)
{

int fd = open(file, O CREATE | S_IRWXU | O RDWR);

if(fd <)

return false;

ssize t ret = write(fd, data, len);

fsync(fd);

close(fd);

return ret 1= -1;

FSYNC GATE

= Fsync can fail |. fd = open("/path/to/file*)

= Bad things happen then 2. write(fd, data, len);
m https://danluu.com/file-consistency/ 3. fsync(fd)
= https://danluu.com/deconstruct-files/ 4. close(fd)
5. pfd = open(‘“‘/path/to”)
= Can Applications Recover from fsync Failures? 6. fsync(fpd)
= https://www.usenix.org/conference/atc20/presentation/r 7. close(pfd)

ebello

= TLDR — nope.

https://danluu.com/file-consistency/
https://danluu.com/deconstruct-files/
https://www.usenix.org/conference/atc20/presentation/rebello

DURABILITY? WHAT ABOUT ROLLBACK?

® Cannot modify in place, what would happen on partial failure?

= Need secondary location.

= Need to durably write there first.

= Models:
" Write Ahead Log
= Append only

m Requires compaction

THEWRITE AHEAD LOG

m Sequential writes
= Durable mode
= Write changes to the data file before making them

m Replay operations from the log on startup
= Redo log
= Undo log

THEWRITE AHEAD LOG & THE PROTOCOL

Chat Message

WRITING TO THE LOG...

® Must be durable = Protect from partial writes
= write() + fsync = Auto extend file or allocate in advance?
= open(O_DSYNC) + write = Hopefully never read...
" Durable writes: = What is the cost of replay the log?
= O DIRECT + O_DSYNC
= 4KB aligned

= Commit happens
after done with log
write

WRITING TO THE LOG IS SLOOOOOW

m Can optimize in several ways
® Merge concurrent transactions to a single write

® Speculatively execute transactions

£
1 B

PART 3: TRANSACTIONS & CONCURRENCY

TRANSACTIONS

m Concurrent transactions?
m Reads + Write?

m Reads + Writes!?
= What is the protocol?

® Single threaded write preferred

m Concurrent writes transactions == locks

= How expensive are these!?

OLTP THROUGH THE LOOKING GLASS PAPER

® Looking and Latching > 30% runtime

m Single threaded is preferred

m Can we model write operations without concurrency?

MVCC — Multi Version Concurrency Control

0 I 2 3
4 Cannes 5 7
9 10 |
12 I |5
COW Page #4
scratch 4 Cannes

Modify Page #4

scratch Emily
Read Page # /
Read Page #4 CornmaiE

PTTE4 000)

Page Transaction Table (PTT)

I
5 7
9
I

4 Cannes
10 |

scratch 4 Emily

Read Page #
Read Page #4

Multiple concurrent versions

4 Cannes 5 6 Brett 7

scratch 4 Emily Scratch | 4 Eddie

Scratch |2 Geogre Scratch |2 Able

TX (R: 14)

6 Hanna

TX (R: 14)

WRITING TO THE DATA FILE

® When no one is looking...
m Copy latest version from scratch to the data file
m Update PTT to remove the reference

= New transactions will go to the data file

ACID

= Atomicity?
® A transaction has a snapshot view of the world, enforced via the PTT

= PTT updates happens atomically

= |solation!?

® Each transaction is independent

= Single write tx

® Readers don’t block writer and vice versa
® Durability

" The write ahead log

WRITING TO THE DATA FILE ISN'T THE END

m Data file writes are buffered

= Can do fsync() occasionally

= After successful fsync():

® Can trim the write ahead log

m Can free scratch buffers

LET’S COMPARE MVCC IMPLEMENTATIONS

Postgres

RavenDB (Voron)

) ey P e P

N O U b

20
26
16

Cannes cannes@foo.bz Cannes Blake
25 Blake cannes@foo.bz Derek Derek
null Emily cannes@foo.bz Goerge Goerge

29 George g@bazfi

select name T 18 = Cannes
T 25 = Blake

where email = ‘cannes@foo.bz T 30 = Emily

Emily
Derek

Goerge

PART 4:TRICKS & OPTIMIZATIONS

WHAT IS MORE COSTLY?

TRADEOFFS

= Writing to the log file is expensive
m Batch writes with transaction merging

= Write full pages to the log, why!?
= Copy on Write

® We have previous & current versions

= Apply DIFF — reduce log size
= Why stop at diff! Compress

Prefetch... l Root \

Range Query
A,B,C D’E’F
‘ Al,A2 ‘ BI,B2 ‘ Cl,C2 lDI,DZ,\l El,E2 \l FI,F2 \

BUFFER MANAGEMENT?

= Complex = Postgres uses 2Q
= Balance current and future needs m Others: LRU,ARC, CAR, LIRS, CLOCK-Pro
m Use enough memory to optimize

® Don’t hurt other aspect of the system

® Need a global view

YOU CAN CHEAT...

= mmap()

= madvise(MADV_WILLNEED) Applications

You decide!

\/
CPU

Memory| |Devices

QUESTIONS?

