
A DEEP DIVE INTO A DATABASE ENGINE INTERNALS
OREN EINI

OREN@RAVENDB.NET

STRUCTURE

 Part 1: Internal structure

 Part 2: Durability

 Part 3: Transactions & Concurrency

 Part 4: Tricks & Optimizations

I BUILD DATABASES FOR A LIVING

 Interview question:

 Build a persistent phone book

 Database is a black box, full of magic

WHAT CONSTITUTE A DATABASE?

 Store and retrieve data

 Format of the data

 Resource management

 Transactions

 ACID

 Query engine

LET’S BUILD A DATABASE

 What do we need for a phone book application?

CSV FOR THE WIN!!!

 Easy to work with

 Human readable

 How do you search?

 O(N)

 How do you modify a record?

 Rewrite the whole file

IN MEMORY ALGORITHMS BADLY SUITED FOR PERSISTENCE

 Sorted data structures:

 AVL Tree

 Skip Lists

 O(logN)

 Optimal *

 * Assuming same access speed for each datum

Hardware Latency (4KB read)

DRAM 50 nanoseconds

NVMe

(Optane)

100 microseconds

100,000 nanoseconds

SSD

(Kingston)

500 microseconds

500,000 nanoseconds

Hard Disk 8 milliseconds

8,000,000 nanoseconds

SEEK TIME DOMINATES PERSISTENT DATA STRUCTURES

Count Search time

(log2N)

Seeks

(SSD)

Seeks

(HDD)

1,000 10 5 ms 80 ms

1,000,000 20 10 ms 800 ms

 Cost of finding a value?

 O(log2N)

 But what is N?

 Random read

 Let’s do the math…

BATCH ACCESS TO MEMORY: PAGES

 Internal space management in the file

 Divide to pages (common 4KB – 4MB)

 Pages are loaded to memory as a single unit

 Modified in memory

 Locality of reference as a core concept

DISK OPTIMIZED ALGORITHM: B+TREE

 Seeks are expensive, so let’s avoid them.

 Bring many results in one disk seek.

 Cost is now (O(logF N) + O(log2 F))

 Where F is fill factor

 Assume F is 100

 Searching in page is free

The Ubiquitous B-Tree - 1979

Count Search time

(log100 N)

Seeks

(SSD)

1,000,000 3 2 ms

1,000,000,000 5 4 ms

MEMORY HIERARCHY

Root

Level 1

Level 2

Level 3

Level 4 Level 4

Level 3

Level 4 Level 4

Level 2

Level 3

Level 4 Level 4

Level 3

Level 4 Level 4

Level 1

Level 2

Level 3

Level 4 Level 4

Level 3

Level 4 Level 4

Level 2

Level 3

Level 4 Level 4

Level 3

Level 4 Level 4

Level 1

Level 2

Level 3

Level 4 Level 4

Level 3

Level 4 Level 4

Level 2

Level 3

Level 4 Level 4

Level 3

Level 4 Level 4

Count Search time

(log100 N)

Seeks

(HDD)

1,000,000 3 24 ms

1,000,000,000 5 40 ms

WHAT IS A PAGE SPLIT? 1/2

Name

Able

Brett

Cannes

Derek

Erik

Frank

George

Name

Able

Brett

Cannes

Derek

Erik

Frank

George

Name

Hanna

6 x empty

Name

Able

Hanna

WHAT IS PAGE SPLIT? 2/2

Name

Able

Brett

Cannes

Derek

Erik

Frank

George

Name

Able

Ben

Brett

Cannes

2 x empty

Name

Derek

Erik

Frank

George

2 x empty

Name

Able

Derek

THE IMPORTANCE OF ORDER

Root

A,B,C

A1,A2 B1,B2 C1,C2

D,E,F

D1,D2, E1,E2 F1,F2

Root

A,B

A1,B2

A1,A2,B1 B2

C,D,E

C1,D2

C2,D1 D2

E1,E2

F

F1, F2

WHAT DO YOU PUT IN THE B+TREE?

Embedded data

C

A,B

Able (email,
name, etc)

Brett (email,
name, etc)

C,D

Cannes(email,
name, etc)

Derek(email,
name, etc)

References

A,B,C,D

Able (31) Brett(55) Cannes(20) Derek(80)

Pos Data

20 Email,Name, etc (Cannes)

31 Email,Name, etc (Able)

55 Email,Name, etc (Brett)

80 Email,Name, etc (Derek)

DEALING WITH LARGE VALUES…

 Overflow – If value too big to put in B+Tree page

 Allocate N pages to fit it.

 Record pointer to it from B+Tree

Root

A,B,C

A1,A2 LargeValue

Large Value

THE STRUCTURE OF A B+TREE PAGE

 Slotted pages

B+TREE IS A SORTED DATA STRUCTURE

 What can we do with it?

 Find by key

 Find by prefix

 Find by range

Clustered?

Yes
Read inline

data

No
Load

related

SELECT FROM Users ORDER BY Registered DESC, Name ASC

Registered (DESC) Name (ASC) Row

2021-03-21 Cannes 21

2021-03-21 Emily 49

2021-03-20 Able 58

2021-03-20 George 84

2021-03-19 Derek 98

For each record:Load via

WHAT IS ?

Logical

 Numeric value that represent the row

 O(logN)

 O(N * logN)

Physical

 Physical location on disk

 O(1)

 O(N * 1)

SELECT FROM Users ORDER BY Registered DESC, Name ASC

REAL WORLD SCENARIO: UBER

WHAT CAN THE DATABASE OPTIMIZE?

 Find by key

 Find by prefix

 Find by range

 Scan by primary key / secondary key

(if there is an index)

 All else: COMPUTE!

PART 2: DURABILITY

DURABILITY

 Disks sucks

 A lot

 They suck a lot and are horrible

 Yes, SSD too

 Yes, NVMe too

 Also, everything you know about I/O is a lie

LATENCY NUMBERS…

 L1 reference - 1 nanosecond

 NVMe Read – 100 microseconds (10,000 nanoseconds)

 SSD Read – 300 microseconds (30,000 nanoseconds)

 HDD Read – 8 milliseconds (8,000,000 nanoseconds)

 On Cloud – Assume latency is x5 worse

https://www.marvell.com/content/dam/marvell/en/public-

collateral/fibre-channel/marvell-fibre-channel-nvme-over-fabrics-

white-paper.pdf

WHAT IS THE ISSUE?

IT’S BUFFERS ALL THE WAY DOWN…

User Buffer

OS Buffer

FS Buffer

Drive Buffer

Disk Buffer

PersistentWrite → Persistent

> 30 seconds

USE FYSNC?

FSYNC GATE

 Fsync can fail

 Bad things happen then

 https://danluu.com/file-consistency/

 https://danluu.com/deconstruct-files/

 Can Applications Recover from fsync Failures?

 https://www.usenix.org/conference/atc20/presentation/r

ebello

 TLDR – nope.

1. fd = open("/path/to/file“)

2. write(fd, data, len);

3. fsync(fd)

4. close(fd)

5. pfd = open(“/path/to”)

6. fsync(fpd)

7. close(pfd)

https://danluu.com/file-consistency/
https://danluu.com/deconstruct-files/
https://www.usenix.org/conference/atc20/presentation/rebello

DURABILITY? WHAT ABOUT ROLLBACK?

 Cannot modify in place, what would happen on partial failure?

 Need secondary location.

 Need to durably write there first.

 Models:

 Write Ahead Log

 Append only

 Requires compaction

THE WRITE AHEAD LOG

 Sequential writes

 Durable mode

 Write changes to the data file before making them

 Replay operations from the log on startup

 Redo log

 Undo log

THE WRITE AHEAD LOG & THE PROTOCOL

Chat Message

WRITING TO THE LOG…

 Must be durable

 write() + fsync

 open(O_DSYNC) + write

 Durable writes:

 O_DIRECT + O_DSYNC

 4KB aligned

 Commit happens

after done with log

write

 Protect from partial writes

 Auto extend file or allocate in advance?

 Hopefully never read…

 What is the cost of replay the log?

WRITING TO THE LOG IS SLOOOOOW

TX 1

Tx 2

TX 3

Write
(1,3,2)

 Can optimize in several ways

 Merge concurrent transactions to a single write

 Speculatively execute transactions

Tx 1 Commit Tx 2 Commit

Tx 1 Commit

Tx 2 Commit

PART 3: TRANSACTIONS & CONCURRENCY

TRANSACTIONS

 Concurrent transactions?

 Reads + Write?

 Reads + Writes?

 What is the protocol?

 Single threaded write preferred

 Concurrent writes transactions == locks

 How expensive are these?

OLTP THROUGH THE LOOKING GLASS PAPER

 Looking and Latching > 30% runtime

 Single threaded is preferred

 Can we model write operations without concurrency?

MVCC – Multi Version Concurrency Control

0 1 2 3

4 Cannes 5 6 7

8 9 10 11

12 13 14 15

Read Page #4

COW Page #4

scratch 4 Cannes

Modify Page #4

scratch 4 Emily

Read Page #8

Read Page #8

Read Page #4

Page Transaction Table (PTT)

0 1 2 3

4 Cannes 5 6 7

8 9 10 11

12 13 14 15

scratch 4 Emily

Read Page #8

Read Page #4

Multiple concurrent versions

0 1 2 Derek 3

4 Cannes 5 6 Brett 7

scratch 4 Emily

Scratch 2 Geogre

6 Hanna

Scratch 4 Eddie

Scratch 2 Able

WRITING TO THE DATA FILE

 When no one is looking…

 Copy latest version from scratch to the data file

 Update PTT to remove the reference

 New transactions will go to the data file

ACID

 Atomicity?

 A transaction has a snapshot view of the world, enforced via the PTT

 PTT updates happens atomically

 Isolation?

 Each transaction is independent

 Single write tx

 Readers don’t block writer and vice versa

 Durability

 The write ahead log

WRITING TO THE DATA FILE ISN’T THE END

 Data file writes are buffered

 Can do fsync() occasionally

 After successful fsync():

 Can trim the write ahead log

 Can free scratch buffers

LET’S COMPARE MVCC IMPLEMENTATIONS

Postgres

rowid from_tx to_tx name email (pk)

4 17 19 Cannes cannes@foo.bz

5 20 25 Blake cannes@foo.bz

6 26 null Emily cannes@foo.bz

7 16 29 George g@baz.fi

RavenDB (Voron)

PTT (17) → 8

Cannes

Derek

Goerge

select name

where email = ‘cannes@foo.bz`

PTT (20) → 8

Blake

Derek

Goerge

PTT (26) → 8

Emily

Derek

Goerge

PART 4: TRICKS & OPTIMIZATIONS

WHAT IS MORE COSTLY?

TRADEOFFS

 Writing to the log file is expensive

 Batch writes with transaction merging

 Write full pages to the log, why?

 Copy on Write

 We have previous & current versions

 Apply DIFF – reduce log size

 Why stop at diff? Compress

Range Query

PREDICT THE FUTURE

Root

A,B,C

A1,A2 B1,B2 C1,C2

D,E,F

D1,D2, E1,E2 F1,F2

BUFFER MANAGEMENT?

 Complex

 Balance current and future needs

 Use enough memory to optimize

 Don’t hurt other aspect of the system

 Need a global view

 Postgres uses 2Q

 Others: LRU, ARC, CAR, LIRS, CLOCK-Pro

🤷♀️🤷♂️

YOU CAN CHEAT…

 mmap()

 madvise(MADV_WILLNEED)

You decide!

QUESTIONS?

