
A DEEP DIVE INTO A DATABASE ENGINE INTERNALS
OREN EINI

OREN@RAVENDB.NET

STRUCTURE

 Part 1: Internal structure

 Part 2: Durability

 Part 3: Transactions & Concurrency

 Part 4: Tricks & Optimizations

I BUILD DATABASES FOR A LIVING

 Interview question:

 Build a persistent phone book

 Database is a black box, full of magic

WHAT CONSTITUTE A DATABASE?

 Store and retrieve data

 Format of the data

 Resource management

 Transactions

 ACID

 Query engine

LET’S BUILD A DATABASE

 What do we need for a phone book application?

CSV FOR THE WIN!!!

 Easy to work with

 Human readable

 How do you search?

 O(N)

 How do you modify a record?

 Rewrite the whole file

IN MEMORY ALGORITHMS BADLY SUITED FOR PERSISTENCE

 Sorted data structures:

 AVL Tree

 Skip Lists

 O(logN)

 Optimal *

 * Assuming same access speed for each datum

Hardware Latency (4KB read)

DRAM 50 nanoseconds

NVMe

(Optane)

100 microseconds

100,000 nanoseconds

SSD

(Kingston)

500 microseconds

500,000 nanoseconds

Hard Disk 8 milliseconds

8,000,000 nanoseconds

SEEK TIME DOMINATES PERSISTENT DATA STRUCTURES

Count Search time

(log2N)

Seeks

(SSD)

Seeks

(HDD)

1,000 10 5 ms 80 ms

1,000,000 20 10 ms 800 ms

 Cost of finding a value?

 O(log2N)

 But what is N?

 Random read

 Let’s do the math…

BATCH ACCESS TO MEMORY: PAGES

 Internal space management in the file

 Divide to pages (common 4KB – 4MB)

 Pages are loaded to memory as a single unit

 Modified in memory

 Locality of reference as a core concept

DISK OPTIMIZED ALGORITHM: B+TREE

 Seeks are expensive, so let’s avoid them.

 Bring many results in one disk seek.

 Cost is now (O(logF N) + O(log2 F))

 Where F is fill factor

 Assume F is 100

 Searching in page is free

The Ubiquitous B-Tree - 1979

Count Search time

(log100 N)

Seeks

(SSD)

1,000,000 3 2 ms

1,000,000,000 5 4 ms

MEMORY HIERARCHY

Root

Level 1

Level 2

Level 3

Level 4 Level 4

Level 3

Level 4 Level 4

Level 2

Level 3

Level 4 Level 4

Level 3

Level 4 Level 4

Level 1

Level 2

Level 3

Level 4 Level 4

Level 3

Level 4 Level 4

Level 2

Level 3

Level 4 Level 4

Level 3

Level 4 Level 4

Level 1

Level 2

Level 3

Level 4 Level 4

Level 3

Level 4 Level 4

Level 2

Level 3

Level 4 Level 4

Level 3

Level 4 Level 4

Count Search time

(log100 N)

Seeks

(HDD)

1,000,000 3 24 ms

1,000,000,000 5 40 ms

WHAT IS A PAGE SPLIT? 1/2

Name

Able

Brett

Cannes

Derek

Erik

Frank

George

Name

Able

Brett

Cannes

Derek

Erik

Frank

George

Name

Hanna

6 x empty

Name

Able

Hanna

WHAT IS PAGE SPLIT? 2/2

Name

Able

Brett

Cannes

Derek

Erik

Frank

George

Name

Able

Ben

Brett

Cannes

2 x empty

Name

Derek

Erik

Frank

George

2 x empty

Name

Able

Derek

THE IMPORTANCE OF ORDER

Root

A,B,C

A1,A2 B1,B2 C1,C2

D,E,F

D1,D2, E1,E2 F1,F2

Root

A,B

A1,B2

A1,A2,B1 B2

C,D,E

C1,D2

C2,D1 D2

E1,E2

F

F1, F2

WHAT DO YOU PUT IN THE B+TREE?

Embedded data

C

A,B

Able (email,
name, etc)

Brett (email,
name, etc)

C,D

Cannes(email,
name, etc)

Derek(email,
name, etc)

References

A,B,C,D

Able (31) Brett(55) Cannes(20) Derek(80)

Pos Data

20 Email,Name, etc (Cannes)

31 Email,Name, etc (Able)

55 Email,Name, etc (Brett)

80 Email,Name, etc (Derek)

DEALING WITH LARGE VALUES…

 Overflow – If value too big to put in B+Tree page

 Allocate N pages to fit it.

 Record pointer to it from B+Tree

Root

A,B,C

A1,A2 LargeValue

Large Value

THE STRUCTURE OF A B+TREE PAGE

 Slotted pages

B+TREE IS A SORTED DATA STRUCTURE

 What can we do with it?

 Find by key

 Find by prefix

 Find by range

Clustered?

Yes
Read inline

data

No
Load

related

SELECT FROM Users ORDER BY Registered DESC, Name ASC

Registered (DESC) Name (ASC) Row

2021-03-21 Cannes 21

2021-03-21 Emily 49

2021-03-20 Able 58

2021-03-20 George 84

2021-03-19 Derek 98

For each record:Load via

WHAT IS ?

Logical

 Numeric value that represent the row

 O(logN)

 O(N * logN)

Physical

 Physical location on disk

 O(1)

 O(N * 1)

SELECT FROM Users ORDER BY Registered DESC, Name ASC

REAL WORLD SCENARIO: UBER

WHAT CAN THE DATABASE OPTIMIZE?

 Find by key

 Find by prefix

 Find by range

 Scan by primary key / secondary key

(if there is an index)

 All else: COMPUTE!

PART 2: DURABILITY

DURABILITY

 Disks sucks

 A lot

 They suck a lot and are horrible

 Yes, SSD too

 Yes, NVMe too

 Also, everything you know about I/O is a lie

LATENCY NUMBERS…

 L1 reference - 1 nanosecond

 NVMe Read – 100 microseconds (10,000 nanoseconds)

 SSD Read – 300 microseconds (30,000 nanoseconds)

 HDD Read – 8 milliseconds (8,000,000 nanoseconds)

 On Cloud – Assume latency is x5 worse

https://www.marvell.com/content/dam/marvell/en/public-

collateral/fibre-channel/marvell-fibre-channel-nvme-over-fabrics-

white-paper.pdf

WHAT IS THE ISSUE?

IT’S BUFFERS ALL THE WAY DOWN…

User Buffer

OS Buffer

FS Buffer

Drive Buffer

Disk Buffer

PersistentWrite → Persistent

> 30 seconds

USE FYSNC?

FSYNC GATE

 Fsync can fail

 Bad things happen then

 https://danluu.com/file-consistency/

 https://danluu.com/deconstruct-files/

 Can Applications Recover from fsync Failures?

 https://www.usenix.org/conference/atc20/presentation/r

ebello

 TLDR – nope.

1. fd = open("/path/to/file“)

2. write(fd, data, len);

3. fsync(fd)

4. close(fd)

5. pfd = open(“/path/to”)

6. fsync(fpd)

7. close(pfd)

https://danluu.com/file-consistency/
https://danluu.com/deconstruct-files/
https://www.usenix.org/conference/atc20/presentation/rebello

DURABILITY? WHAT ABOUT ROLLBACK?

 Cannot modify in place, what would happen on partial failure?

 Need secondary location.

 Need to durably write there first.

 Models:

 Write Ahead Log

 Append only

 Requires compaction

THE WRITE AHEAD LOG

 Sequential writes

 Durable mode

 Write changes to the data file before making them

 Replay operations from the log on startup

 Redo log

 Undo log

THE WRITE AHEAD LOG & THE PROTOCOL

Chat Message

WRITING TO THE LOG…

 Must be durable

 write() + fsync

 open(O_DSYNC) + write

 Durable writes:

 O_DIRECT + O_DSYNC

 4KB aligned

 Commit happens

after done with log

write

 Protect from partial writes

 Auto extend file or allocate in advance?

 Hopefully never read…

 What is the cost of replay the log?

WRITING TO THE LOG IS SLOOOOOW

TX 1

Tx 2

TX 3

Write
(1,3,2)

 Can optimize in several ways

 Merge concurrent transactions to a single write

 Speculatively execute transactions

Tx 1 Commit Tx 2 Commit

Tx 1 Commit

Tx 2 Commit

PART 3: TRANSACTIONS & CONCURRENCY

TRANSACTIONS

 Concurrent transactions?

 Reads + Write?

 Reads + Writes?

 What is the protocol?

 Single threaded write preferred

 Concurrent writes transactions == locks

 How expensive are these?

OLTP THROUGH THE LOOKING GLASS PAPER

 Looking and Latching > 30% runtime

 Single threaded is preferred

 Can we model write operations without concurrency?

MVCC – Multi Version Concurrency Control

0 1 2 3

4 Cannes 5 6 7

8 9 10 11

12 13 14 15

Read Page #4

COW Page #4

scratch 4 Cannes

Modify Page #4

scratch 4 Emily

Read Page #8

Read Page #8

Read Page #4

Page Transaction Table (PTT)

0 1 2 3

4 Cannes 5 6 7

8 9 10 11

12 13 14 15

scratch 4 Emily

Read Page #8

Read Page #4

Multiple concurrent versions

0 1 2 Derek 3

4 Cannes 5 6 Brett 7

scratch 4 Emily

Scratch 2 Geogre

6 Hanna

Scratch 4 Eddie

Scratch 2 Able

WRITING TO THE DATA FILE

 When no one is looking…

 Copy latest version from scratch to the data file

 Update PTT to remove the reference

 New transactions will go to the data file

ACID

 Atomicity?

 A transaction has a snapshot view of the world, enforced via the PTT

 PTT updates happens atomically

 Isolation?

 Each transaction is independent

 Single write tx

 Readers don’t block writer and vice versa

 Durability

 The write ahead log

WRITING TO THE DATA FILE ISN’T THE END

 Data file writes are buffered

 Can do fsync() occasionally

 After successful fsync():

 Can trim the write ahead log

 Can free scratch buffers

LET’S COMPARE MVCC IMPLEMENTATIONS

Postgres

rowid from_tx to_tx name email (pk)

4 17 19 Cannes cannes@foo.bz

5 20 25 Blake cannes@foo.bz

6 26 null Emily cannes@foo.bz

7 16 29 George g@baz.fi

RavenDB (Voron)

PTT (17) → 8

Cannes

Derek

Goerge

select name

where email = ‘cannes@foo.bz`

PTT (20) → 8

Blake

Derek

Goerge

PTT (26) → 8

Emily

Derek

Goerge

PART 4: TRICKS & OPTIMIZATIONS

WHAT IS MORE COSTLY?

TRADEOFFS

 Writing to the log file is expensive

 Batch writes with transaction merging

 Write full pages to the log, why?

 Copy on Write

 We have previous & current versions

 Apply DIFF – reduce log size

 Why stop at diff? Compress

Range Query

PREDICT THE FUTURE

Root

A,B,C

A1,A2 B1,B2 C1,C2

D,E,F

D1,D2, E1,E2 F1,F2

BUFFER MANAGEMENT?

 Complex

 Balance current and future needs

 Use enough memory to optimize

 Don’t hurt other aspect of the system

 Need a global view

 Postgres uses 2Q

 Others: LRU, ARC, CAR, LIRS, CLOCK-Pro

🤷‍♀️🤷‍♂️

YOU CAN CHEAT…

 mmap()

 madvise(MADV_WILLNEED)

You decide!

QUESTIONS?

