
An app modernization story with 
Cloud Run 

Mete Atamel
Developer Advocate at Google
@meteatamel
atamel.dev/tags/app-modernization



Stage 0: Prototype (Late 2015 / Early 2016)
Goal: Get something up and running

Reader
Transformer

Web API

Server: ASP.NET (4.6) Windows app on IIS hosting
Client: Android and iOS app with Ionic Framework



Prototype: Pros & Cons

+Worked!

+Easy to understand

+Easy to deploy 

+Inexpensive 

-Too much coupling 

-Bad DevEx (FTP to see logs!)

-No redundancy

-No persistence

-No resilience



Prototype: Lessons Learned

1. Stick to MVP
2. Research your options
3. Avoid coupling at all costs
4. Design with future in mind



Stage 1: Lift & Shift (Late 2016 / Early 2017)
Goal: Improve resiliency and redundancy

Compute Engine Windows VMs on Google Cloud

Compute 
Engine

Compute 
Engine

Cloud Load 
Balancer



Lift & Shift: Pros & Cons

+Easy to move with ASP.NET Framework Template

+Redundancy & load-balancing with Instance Template & Groups

+Possiblity of autoscaling

+Much better DevEx with Stackdriver logging, VM snapshots etc. 

-More expensive than IIS hosting



Lift & Shift: Lessons Learned

1. Moving to Cloud was not that difficult
2. Cloud is much more than just hosting



The app served us well until 2019...

1. .NET Core
2. Windows dependency
3. Containers 
4. Costs



Stage 2: Containarization (Early 2019)
Goal: Remove Windows dependency and cost

Re-write in ASP.NET Core (2.2), containerize w/ Docker & 
deploy to App Engine Flex (Linux)

App Engine



Containarization: Pros & Cons

+Windows license fees out

+Free autoscaling

+Revision management

+Traffic splitting

-VM based

-Pricing

-Slow deploys 



Containarization: Lessons Learned

1. Refactor for clear benefits
2. Solid functional tests are crucial
3. Project organization matters
4. There’s no magic bullet



Container to 
production 
in seconds

Natively 
Serverless

One experience, 
where you want it

Cloud Run

Bringing serverless to containers



HTTPS Endpoint

Public
• Website
• API endpoint

Private
• Internal services
• Async tasks

• Mobile backend
• Webhook



Billable time

Instance

Billable Time

Request 1 Start Request 1 EndRequest 2 Start Request 2 End

Instance Time

Billable

Non-billable



Stage 3: Serverless (Mid 2019)
Goal: Move from VM minute-based pricing to serverless pricing

Update to ASP.NET Core (3.0) & deploy to Cloud Run

Cloud Run



Serverless: Pros & Cons

+No VMs

+Serverless billing, much cheaper

+Quick deployments (seconds)

+Great DevEx (integrated logging, revision and traffic 
management, etc.)

+Based on open-source Knative

-Still a monolith with monolith issues



Monolith issues

1. Scaling: all or nothing
2. Cold starts
3. In-memory state
4. No way to update individual services



Monolith decomposition questions

1. How do you break the monolith?
2. How do microservices communicate?
3. How do you handle persistence without 

coupling?



Stage 4: Monolith to microservices (Early 2020)

Cloud Scheduler

Cloud 
Pub/Sub

Converter
(Private)

Cloud Storage

Web
(Public)

Cloud Firestore

Reader
(Private)



Monolith to microservices: Pros & Cons

+Loosely coupled architecture

+Ability to update individual pieces

+Ability to use different languages

+Better utilization of resources

+Persistence

-Many moving parts

-More complex deployment

-Probably more expensive than a monolith?



Grand Lessons Learned

● Transformation does not have to be all or nothing
● Even simple lift & shift can have huge benefits
● Non-optimal solutions can be a stepping stone to 

more optimal solutions
● Expect some kind of re-write for cloud at some point
● Monolith decomposition is hard! Need a good reason 

beyond separation of concerns



@meteatamel 
atamel.dev/tags/app-modernization

github.com/meteatamel/amathus

github.com/meteatamel/cloudrun-tutorial
cloud.google.com/run

Thank you!


