
Copyright © 2020 Oracle and/or its affiliates.

Java threads are losing weight
Project Loom

Java Platform Group
Oracle
July, 2020

Sergey Kuksenko

The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development,
release, timing, and pricing of any features or functionality described for Oracle’s products may change
and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.

Safe Harbor

Copyright © 2020 Oracle and/or its affiliates.Copyright © 2020 Oracle and/or its affiliates.

http://www.oracle.com/investor

Copyright © 2020 Oracle and/or its affiliates.

Who am I?

- Java/JVM Performance Engineer at Oracle, @since 2010
- Java/JVM Performance Engineer, @since 2005
- Java/JVM Engineer, @since 1996

Copyright © 2020 Oracle and/or its affiliates.

Copyright © 2020 Oracle and/or its affiliates.

Java and Threads

Copyright © 2020 Oracle and/or its affiliates.

Presenter’s Title
Organization
Month 00, 2019

Presenter’s Name

Close Encounters of the 7th Kind

Copyright © 2020 Oracle and/or its affiliates. 5Copyright © 2020 Oracle and/or its affiliates.

25 years ago

Java was the first* language** with threads***

Copyright © 2020 Oracle and/or its affiliates. 6Copyright © 2020 Oracle and/or its affiliates.

25 years ago

Java was the first* language** with threads***

* - first-ish
** - widely used language
*** - threads as a part of the language, not a library

Copyright © 2020 Oracle and/or its affiliates. 7Copyright © 2020 Oracle and/or its affiliates.

Java threads
● java.lang.Thread

● easy to use
● platform/OS/HW independent

● Bring concurrency to the masses

The devil is in the detail implementation

Copyright © 2020 Oracle and/or its affiliates. 8Copyright © 2020 Oracle and/or its affiliates.

Java threads
● java.lang.Thread

● easy to use
● platform/OS/HW independent

● Bring concurrency to the masses

● The devil is in the detail implementation

Copyright © 2020 Oracle and/or its affiliates. 9Copyright © 2020 Oracle and/or its affiliates.

Green Threads (Java childhood)

OS

Java

Threads

Threads

M:1
scheduler

Copyright © 2020 Oracle and/or its affiliates. 10Copyright © 2020 Oracle and/or its affiliates.

Native Threads

Threads

Threads

1:1

OS

Java

scheduler

Copyright © 2020 Oracle and/or its affiliates. 11Copyright © 2020 Oracle and/or its affiliates.

At the turn of the millennium

● Green threads are dead
● Java thread is still OS independent abstraction
● Nobody separates Java and OS threads anymore*

* - sometimes abstractions may leak in minds

Copyright © 2020 Oracle and/or its affiliates.

Threads are expensive

Copyright © 2020 Oracle and/or its affiliates.

Presenter’s Title
Organization
Month 00, 2019

Copyright © 2020 Oracle and/or its affiliates. 13Copyright © 2020 Oracle and/or its affiliates.

Expensive to start
● Do nothing* 1024 times

time, ns

sequentially 3,349

in threads 89,154,422

* - JMH’s Blackhole.consumeCPU(0)

Copyright © 2020 Oracle and/or its affiliates. 14Copyright © 2020 Oracle and/or its affiliates.

Expensive to start

● Fixed @since Java 1.5

● Thread pools, Executor, ExecutorService

● Tasks, Callable<>

● java.util.concurrent – new collections, locks

Copyright © 2020 Oracle and/or its affiliates. 15Copyright © 2020 Oracle and/or its affiliates.

Context switch

● Going to kernel
● Cost in tens microseconds

Copyright © 2020 Oracle and/or its affiliates. 16Copyright © 2020 Oracle and/or its affiliates.

Memory-heavy

● Typical stack size – 1M
● + ~16K of native memory
● + ~1K of Java heap
● + some Java features

● e.g. ThreadLocals, GC’s TLAB

Copyright © 2020 Oracle and/or its affiliates. 17Copyright © 2020 Oracle and/or its affiliates.

Caches, NUMA

● Kernel scheduler is trying to be good for everyone
● Bad cache locality
● Bad NUMA placement

Copyright © 2020 Oracle and/or its affiliates. 18Copyright © 2020 Oracle and/or its affiliates.

What we’ve got

● Threads are expensive - can’t have millions of them
● Threads are mostly idle (blocked)

● Our systems are still underutilized
● Not scalable

Copyright © 2020 Oracle and/or its affiliates.

The raise of async

 or

We need a chopper

Copyright © 2020 Oracle and/or its affiliates.

Copyright © 2020 Oracle and/or its affiliates. 20Copyright © 2020 Oracle and/or its affiliates.

Chopper

Copyright © 2020 Oracle and/or its affiliates. 21Copyright © 2020 Oracle and/or its affiliates.

Myriads of them

● Async callbacks
● Promises (e.g. CompletableFuture)
● async/await
● Suspendable functions
● Reactive systems
● . . .

Copyright © 2020 Oracle and/or its affiliates. 22Copyright © 2020 Oracle and/or its affiliates.

The key idea

● Split execution to many pieces
● Evenly distribute to limited amount of threads

Copyright © 2020 Oracle and/or its affiliates. 23Copyright © 2020 Oracle and/or its affiliates.

Ask Google

Copyright © 2020 Oracle and/or its affiliates. 24Copyright © 2020 Oracle and/or its affiliates.

The key idea

● Split execution to many non blocking pieces
● Evenly distribute to limited amount of threads

Copyright © 2020 Oracle and/or its affiliates. 25Copyright © 2020 Oracle and/or its affiliates.

Async

● Inventing new concepts (async) in attempts to

solve implementation deficiencies.

Copyright © 2020 Oracle and/or its affiliates. 26Copyright © 2020 Oracle and/or its affiliates.

Async issues
● Hard to find proper cut places
● Still not cache friendly
● Hard to write and understand code
● Debugging?
● ...

Copyright © 2020 Oracle and/or its affiliates. 27Copyright © 2020 Oracle and/or its affiliates.

Function coloring

http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

Copyright © 2020 Oracle and/or its affiliates. 28Copyright © 2020 Oracle and/or its affiliates.

TPC vs TPC

Thread
Per

Connection

 Thread
 Per
 Core

Developer productivity System productivity

OR

Copyright © 2020 Oracle and/or its affiliates.

Some ideas

Copyright © 2020 Oracle and/or its affiliates.

Presenter’s Title
Organization
Month 00, 2019

Copyright © 2020 Oracle and/or its affiliates. 30Copyright © 2020 Oracle and/or its affiliates.

Expensive Worker
● Given: expensive worker is sitting idle
● Find: how to make the worker useful
● Solution:

- function to save/restore task state(context)

- some sort of manager (scheduler)

Copyright © 2020 Oracle and/or its affiliates. 31Copyright © 2020 Oracle and/or its affiliates.

Expensive Worker

Multythreading
● Worker: CPU
● State: stack
● Function: context switch
● OS Scheduler

Copyright © 2020 Oracle and/or its affiliates. 32Copyright © 2020 Oracle and/or its affiliates.

Expensive Worker

Lightweight/user-level threads
● Worker: OS thread
● State: continuation
● Function: freeze/thaw
● User level scheduler

Copyright © 2020 Oracle and/or its affiliates. 33Copyright © 2020 Oracle and/or its affiliates.

Ask Google

Copyright © 2020 Oracle and/or its affiliates. 34Copyright © 2020 Oracle and/or its affiliates.

Ask Parallel Universe

Copyright © 2020 Oracle and/or its affiliates.

Project Loom

Copyright © 2020 Oracle and/or its affiliates.

Presenter’s Title
Organization
Month 00, 2019

Presenter’s Name

Copyright © 2020 Oracle and/or its affiliates. 36Copyright © 2020 Oracle and/or its affiliates.

Project Loom
● Lightweight threads
● Continuations
● Tail-call recursion elimination

Copyright © 2020 Oracle and/or its affiliates. 37Copyright © 2020 Oracle and/or its affiliates.

public class Thread {
 ...
 /**
 * Returns true if this thread scheduled by the Java
 * virtual machine rather than the operating system.
 *
 * @since Loom
 */
 public boolean isVirtual()

 ...
}

class VirtualThread extends Thread { ... }

Lightweight thread

Copyright © 2020 Oracle and/or its affiliates. 38Copyright © 2020 Oracle and/or its affiliates.

Virtual Threads

Threads

Threads

1:1

Virtual threads

M:N

Carrier Threads

OS

Java

scheduler

yet another scheduler

Copyright © 2020 Oracle and/or its affiliates. 39Copyright © 2020 Oracle and/or its affiliates.

Threads

● Virtual threads are threads
– no need to rewrite code if you want it

● Non virtual threads are not changed
– still 1:1 mapping to OS threads

– no need to rewrite code if you don’t want it

Copyright © 2020 Oracle and/or its affiliates. 40Copyright © 2020 Oracle and/or its affiliates.

Threads

● Carrier threads (non-virtual)
– carry the virtual threads on their backs

● Scheduler:
– mount virtual thread to the carrier

– unmount virtual thread from the carrier

Copyright © 2020 Oracle and/or its affiliates. 41Copyright © 2020 Oracle and/or its affiliates.

Thread t = Thread.builder().virtual().task(() -> {...}).start();
 ...

Thread t = Thread.builder().virtual().task(() -> {...}).build();
 ...

ThreadFactory tf = Thread.builder().virtual().factory();
 ...

ExecutorService e = Executors.newVirtualThreadExecutor();

Threads

Copyright © 2020 Oracle and/or its affiliates. 42Copyright © 2020 Oracle and/or its affiliates.

Scheduler

● Use any executor as scheduler
– Thread.builder().virtual(scheduler)...

● ForkJoinPool by default

Copyright © 2020 Oracle and/or its affiliates. 43Copyright © 2020 Oracle and/or its affiliates.

Scheduling

● Virtual threads are preemptive, not cooperative
– No explicit yield operation

● Preemption points:
– I/O blocking

– synchronization blocking

Copyright © 2020 Oracle and/or its affiliates. 44Copyright © 2020 Oracle and/or its affiliates.

Scheduling

● Forced preemption (time slice)
– any thread may be stopped at safepoint

– not implemented now

– maybe in a future

Copyright © 2020 Oracle and/or its affiliates. 45Copyright © 2020 Oracle and/or its affiliates.

Continuation

Copyright © 2020 Oracle and/or its affiliates. 46Copyright © 2020 Oracle and/or its affiliates.

Continuation in Java

● State a.k.a. stack of the virtual thread

Copyright © 2020 Oracle and/or its affiliates. 47Copyright © 2020 Oracle and/or its affiliates.

Where to store?
● On thread stack? Really?

● Java heap? Expensive.

● Off-heap? Need to tame GC. Too complex.

● Copying!

Copyright © 2020 Oracle and/or its affiliates. 48Copyright © 2020 Oracle and/or its affiliates.

Where to store?
● Mounted virtual thread:

● Use OS thread stack

● Unmounted virtual thread:
● Copied to Java heap
● Lazy-copying
● Chunked copying
● etc...

Performance is good, but there are
places for improvement

Copyright © 2020 Oracle and/or its affiliates. 49Copyright © 2020 Oracle and/or its affiliates.

Continuations
● Interesting usages (not implemented yet):

- cloning

- serialization

- etc.

It’s not a goal to expose Continuation API

Copyright © 2020 Oracle and/or its affiliates. 50Copyright © 2020 Oracle and/or its affiliates.

Continuations
● Interesting usages (not implemented yet):

- cloning

- serialization

- etc.
● It’s not a goal to expose Continuation API

Copyright © 2020 Oracle and/or its affiliates.

Some implementation details

Copyright © 2020 Oracle and/or its affiliates.

Presenter’s Title
Organization
Month 00, 2019

Presenter’s Name

Copyright © 2020 Oracle and/or its affiliates. 52Copyright © 2020 Oracle and/or its affiliates.

Fight for memory

● Typical continuation size ~200-~1000 bytes

● j.l.Thread size optimization – now 350-400 bytes

Copyright © 2020 Oracle and/or its affiliates. 53Copyright © 2020 Oracle and/or its affiliates.

Fight for memory

● ThreadLocal<T>

● designed for rare and exclusive usage

● pervasive usage over classlibs and frameworks

● typical source of memory leaks

Copyright © 2020 Oracle and/or its affiliates. 54Copyright © 2020 Oracle and/or its affiliates.

Fight for memory

● ThreadLocal<T>

● cleaning classlibs (get rid of ThreadLocals)

● Thread.builder().disallowThreadLocals()

Copyright © 2020 Oracle and/or its affiliates. 55Copyright © 2020 Oracle and/or its affiliates.

Pinning

● Virtual thread may be pinned to the carrier
● Pinned thread can’t be unmounted

● Pinned thread can be diagnosed
● Will be JFR events

Copyright © 2020 Oracle and/or its affiliates. 56Copyright © 2020 Oracle and/or its affiliates.

Native code

● Native stack frame – thread is pinned

Copyright © 2020 Oracle and/or its affiliates. 57Copyright © 2020 Oracle and/or its affiliates.

The curse of two locks

Object monitor java.util.concurrent.locks

 @since 1.0 @since 1.5

 synchronized(){...}
 wait(), notify() ...

 ReentrantLock,
 ReadWriteLock, …

 BiasedLocking,
 thin/fat locks,
 adaptive spinning

 tryLock,
 fairness

Copyright © 2020 Oracle and/or its affiliates. 58Copyright © 2020 Oracle and/or its affiliates.

The curse of two locks

Object monitor java.util.concurrent.locks

The art of assembler

Part of runtime

The art of simplicity

Built on: CAS, park, unpark
Everything else – on Java

Copyright © 2020 Oracle and/or its affiliates. 59Copyright © 2020 Oracle and/or its affiliates.

The curse of two locks

Object monitor java.util.concurrent.locks

Large refactoring is required

Not yet implemented

Virtual threads are pinned

 Loom friendly

Copyright © 2020 Oracle and/or its affiliates. 60Copyright © 2020 Oracle and/or its affiliates.

Classlibrary

● Make blocking I/O API Loom friendly
● Migration from Object monitors to j.u.c.locks
● ThreadLocal cleaning
● ...

Copyright © 2020 Oracle and/or its affiliates.

Loom performance

Copyright © 2020 Oracle and/or its affiliates.

Presenter’s Title
Organization
Month 00, 2019

Presenter’s Name

Copyright © 2020 Oracle and/or its affiliates. 62Copyright © 2020 Oracle and/or its affiliates.

Start cost
● Do nothing* 1024 times

time, ns

sequentially 3,349

in threads 89,154,422

in virtual threads 1,591,256

* - JMH’s Blackhole.consumeCPU(0)

Copyright © 2020 Oracle and/or its affiliates. 63Copyright © 2020 Oracle and/or its affiliates.

Start cost
● Do nothing* 1000000 times

time, ms

sequentially 3,2

in threads OutOfMemoryException

in virtual threads 1104.7

* - JMH’s Blackhole.consumeCPU(0)

Copyright © 2020 Oracle and/or its affiliates. 64Copyright © 2020 Oracle and/or its affiliates.

Context switch cost

Copyright © 2020 Oracle and/or its affiliates. 65Copyright © 2020 Oracle and/or its affiliates.

Context switch cost

Copyright © 2020 Oracle and/or its affiliates. 66Copyright © 2020 Oracle and/or its affiliates.

What about latency?

Copyright © 2020 Oracle and/or its affiliates. 67Copyright © 2020 Oracle and/or its affiliates.

What about latency?

Copyright © 2020 Oracle and/or its affiliates. 68Copyright © 2020 Oracle and/or its affiliates.

What about latency?

Copyright © 2020 Oracle and/or its affiliates. 69Copyright © 2020 Oracle and/or its affiliates.

CPU intensive computations

Copyright © 2020 Oracle and/or its affiliates. 70Copyright © 2020 Oracle and/or its affiliates.

TPC + TPC

Virtual
Thread

Per
Connection

 Native
 Thread

 Per
 Core

Developer productivity System productivity

AND

Copyright © 2020 Oracle and/or its affiliates.

Beyond the scope of this talk

Copyright © 2020 Oracle and/or its affiliates.

Presenter’s Name

Copyright © 2020 Oracle and/or its affiliates. 72Copyright © 2020 Oracle and/or its affiliates.

IdontWantToTalkAboutItYetException

● Channels
● Structured Concurrency
● Scope Variables
● Processor Locals
● Timeouts and cancellation
● …

Copyright © 2020 Oracle and/or its affiliates. 73Copyright © 2020 Oracle and/or its affiliates.

Links
• Wiki:

 https://wiki.openjdk.java.net/display/loom/Main

• Mailing lists:
http://mail.openjdk.java.net/pipermail/loom-dev/

• Repository:
https://github.com/openjdk/loom

https://wiki.openjdk.java.net/display/loom/Main

Copyright © 2020 Oracle and/or its affiliates.

Thank You

Java Platform Group
Oracle

Sergey Kuksenko

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

