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Who am I?

- Java/JVM Performance Engineer at Oracle, @since 2010
- Java/JVM Performance Engineer, @since 2005
- Java/JVM Engineer, @since 1996
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Java and Threads
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25 years ago

Java was the first* language** with threads***
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25 years ago

Java was the first* language** with threads***

*     - first-ish
**   - widely used language
*** - threads as a part of the language, not a library
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Java threads
● java.lang.Thread

● easy to use
● platform/OS/HW independent

● Bring concurrency to the masses

The devil is in the detail implementation
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Green Threads (Java childhood)

OS

Java

Threads

Threads

M:1
scheduler
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Native Threads

Threads

Threads

1:1

OS
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scheduler
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At the turn of the millennium

● Green threads are dead
● Java thread is still OS independent abstraction
● Nobody separates Java and OS threads anymore*

* - sometimes abstractions may leak in minds
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Threads are expensive
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Expensive to start
● Do nothing* 1024 times

time, ns

sequentially 3,349

in threads 89,154,422

* - JMH’s Blackhole.consumeCPU(0)
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Expensive to start

● Fixed @since Java 1.5

● Thread pools, Executor, ExecutorService

● Tasks, Callable<>

● java.util.concurrent – new collections, locks
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Context switch

● Going to kernel
● Cost in tens microseconds
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Memory-heavy

● Typical stack size – 1M
● + ~16K of native memory
● + ~1K of Java heap
● + some Java features 

● e.g. ThreadLocals, GC’s TLAB
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Caches, NUMA

● Kernel scheduler is trying to be good for everyone
● Bad cache locality
● Bad NUMA placement
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What we’ve got

● Threads are expensive - can’t have millions of them
● Threads are mostly idle (blocked)

● Our systems are still underutilized
● Not scalable
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The raise of async

             or 

We need a chopper
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Chopper
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Myriads of them

● Async callbacks
● Promises (e.g. CompletableFuture) 
● async/await
● Suspendable functions
● Reactive systems
● . . .
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The key idea

● Split execution to many pieces
● Evenly distribute to limited amount of threads
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Ask Google
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The key idea

● Split execution to many non blocking pieces
● Evenly distribute to limited amount of threads
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Async

● Inventing new concepts (async) in attempts to 

solve implementation deficiencies. 
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Async issues
● Hard to find proper cut places
● Still not cache friendly
● Hard to write and understand code
● Debugging?
● ...
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Function coloring

http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
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TPC vs TPC

Thread 
Per 

Connection

   Thread 
   Per 
  Core

Developer productivity System productivity

OR
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Some ideas
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Expensive Worker
● Given: expensive worker is sitting idle 
● Find: how to make the worker useful 
● Solution:

- function to save/restore task state(context)

- some sort of manager (scheduler)
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Expensive Worker

Multythreading
● Worker: CPU
● State: stack 
● Function: context switch
● OS Scheduler
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Expensive Worker

Lightweight/user-level threads
● Worker: OS thread
● State: continuation
● Function: freeze/thaw
● User level scheduler
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Ask Google
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Ask Parallel Universe
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Project Loom
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Project Loom
● Lightweight threads
● Continuations
● Tail-call recursion elimination
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public class Thread {
    ...
    /**
     * Returns true if this thread scheduled by the Java
     * virtual machine rather than the operating system.
     *
     * @since Loom
     */
    public boolean isVirtual() 

    ...
}

class VirtualThread extends Thread { ... }

Lightweight thread
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Virtual Threads

Threads

Threads

1:1

Virtual threads

M:N

Carrier Threads

OS

Java

scheduler

yet another scheduler
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Threads

● Virtual threads are threads 
– no need to rewrite code if you want it

● Non virtual threads are not changed
– still 1:1 mapping to OS threads 

– no need to rewrite code if you don’t want it



Copyright © 2020 Oracle and/or its affiliates. 40Copyright © 2020 Oracle and/or its affiliates.

Threads

● Carrier threads (non-virtual)
– carry the virtual threads on their backs

● Scheduler:
– mount virtual thread to the carrier 

– unmount virtual thread from the carrier 
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Thread t = Thread.builder().virtual().task(() -> {...}).start();
    ...

Thread t = Thread.builder().virtual().task(() -> {...}).build();
    ...

ThreadFactory tf = Thread.builder().virtual().factory();
    ...

ExecutorService e = Executors.newVirtualThreadExecutor();

Threads



Copyright © 2020 Oracle and/or its affiliates. 42Copyright © 2020 Oracle and/or its affiliates.

Scheduler

● Use any executor as scheduler
– Thread.builder().virtual(scheduler)...

● ForkJoinPool by default
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Scheduling

● Virtual threads are preemptive, not cooperative
– No explicit yield operation

● Preemption points:
– I/O blocking

– synchronization blocking
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Scheduling

● Forced preemption (time slice)
– any thread may be stopped at safepoint

– not implemented now

– maybe in a future
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Continuation
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Continuation in Java

● State a.k.a. stack of the virtual thread
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Where to store?
● On thread stack? Really?

● Java heap? Expensive.

● Off-heap? Need to tame GC. Too complex.

● Copying!
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Where to store?
● Mounted virtual thread:

● Use OS thread stack

● Unmounted virtual thread:
● Copied to Java heap
● Lazy-copying
● Chunked copying
● etc...

Performance is good, but there are 
places for improvement
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Continuations
● Interesting usages (not implemented yet):

- cloning

- serialization

- etc.

It’s not a goal to expose Continuation API
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Continuations
● Interesting usages (not implemented yet):
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● It’s not a goal to expose Continuation API
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Some implementation details
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Fight for memory

● Typical continuation size ~200-~1000 bytes

● j.l.Thread size optimization – now 350-400 bytes
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Fight for memory

● ThreadLocal<T>

● designed for rare and exclusive usage

● pervasive usage over classlibs and frameworks 

● typical source of memory leaks
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Fight for memory

● ThreadLocal<T>

● cleaning classlibs (get rid of ThreadLocals)

● Thread.builder().disallowThreadLocals() 
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Pinning

● Virtual thread may be pinned to the carrier
● Pinned thread can’t be unmounted

● Pinned thread can be diagnosed
● Will be JFR events



Copyright © 2020 Oracle and/or its affiliates. 56Copyright © 2020 Oracle and/or its affiliates.

Native code

● Native stack frame – thread is pinned
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The curse of two locks

Object monitor java.util.concurrent.locks

 @since 1.0  @since 1.5

 synchronized(){...}
 wait(), notify() ...

 ReentrantLock,
 ReadWriteLock, …

 BiasedLocking, 
 thin/fat locks,
 adaptive spinning

 tryLock, 
 fairness
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The curse of two locks

Object monitor java.util.concurrent.locks

The art of assembler 

Part of runtime

The art of simplicity

Built on:  CAS, park, unpark
Everything else – on Java
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The curse of two locks

Object monitor java.util.concurrent.locks

Large refactoring is required

Not yet implemented

Virtual threads are pinned

 Loom friendly
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Classlibrary

● Make blocking I/O API Loom friendly
● Migration from Object monitors to j.u.c.locks
● ThreadLocal cleaning
● ...
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Loom performance
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Start cost
● Do nothing* 1024 times

time, ns

sequentially 3,349

in threads 89,154,422

in virtual threads 1,591,256

* - JMH’s Blackhole.consumeCPU(0)
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Start cost
● Do nothing* 1000000 times

time, ms

sequentially 3,2

in threads OutOfMemoryException

in virtual threads 1104.7

* - JMH’s Blackhole.consumeCPU(0)
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Context switch cost
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Context switch cost
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What about latency?
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What about latency?
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What about latency?
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CPU intensive computations
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TPC + TPC

Virtual
Thread 

Per 
Connection

    Native  
  Thread 

  Per 
 Core

Developer productivity System productivity

AND
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Beyond the scope of this talk
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IdontWantToTalkAboutItYetException

● Channels
● Structured Concurrency
● Scope Variables
● Processor Locals
● Timeouts and cancellation 
● …
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Links
• Wiki:

 https://wiki.openjdk.java.net/display/loom/Main 

• Mailing lists:
http://mail.openjdk.java.net/pipermail/loom-dev/

• Repository:
https://github.com/openjdk/loom

https://wiki.openjdk.java.net/display/loom/Main
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Thank You

Java Platform Group
Oracle

Sergey Kuksenko
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