
Why User-Mode Threads
Are Often the Right Answer

Ron Pressler

Java Platform Group

14 April 2021

2

• Exceptions

• Thread Locals

• Debugger

• Profiler (JFR)

Java Is Made of Threads

Copyright © 2021, Oracle and/or its affiliates

3

Threads in Java
• java.lang.Thread

• One implementation: OS threads

• OS threads support all languages.

• RAM-heavy — megabyte-scale; page granularity; can’t uncommit.

• Task-switching requires switch to kernel.

• Scheduling is a compromise for all usages. Bad cache locality.

3 Copyright © 2021, Oracle and/or its affiliates

4

• A costly resource

Synchronous

• Easy to read

• Fits well with language (control flow, exceptions)

• Fits well with tooling (debuggers, profilers)

But
Programmer 😀

OS / Hardware ☹

Copyright © 2021, Oracle and/or its affiliates

Concurrency

5 L = λW Copyright © 2021, Oracle and/or its affiliates

6

Reuse with Thread Pools

Copyright © 2021, Oracle and/or its affiliates

7

Reuse with Thread Pools

• Return at end

• Leaking ThreadLocals

• Complex cancellation (interruption)

Copyright © 2021, Oracle and/or its affiliates

8

Reuse with Thread Pools

• Return at end

• Leaking ThreadLocals

• Complex cancellation (interruption)

• Return at wait

• Incompatible APIs

• Lost context

Copyright © 2021, Oracle and/or its affiliates

9

• Hard to read

• Lost context: Very hard to debug and profile

• Intrusive; nearly impossible to migrate

Asynchronous

• Scalable

But

Programmer ☹

OS / Hardware 😀

9 Copyright © 2021, Oracle and/or its affiliates

10

simple
less scalable

scalable,
complex,
non-interoperable,
hard to debug/profile

OR

SYNC

Java Blue

ASYNC

Programmer 😀

OS / Hardware ☹

Programmer ☹

OS / Hardware 😀

Copyright © 2021, Oracle and/or its affiliates

11

Codes Like Sync, Scales Like Async

App

Connections

Programmer 😀

OS / Hardware 😀
11Copyright © 2021, Oracle and/or its affiliates

• Forward Compatibility: we want
existing code to enjoy new functionality

• We want to correct past mistakes and
start afresh

“We must carefully balance  
 conservation and innovation”

— Mark Reinhold

“The solutions of yesterday 
 are the problems of today”

— Brian Goetz
12 Copyright © 2021, Oracle and/or its affiliates

13

• The use of Thread.currentThread() and ThreadLocal is
pervasive. Without support, or with changed behaviour, little
existing code would run.

• Other parts are superseded by new APIs since Java 5 so their
datedness/clunkiness is mostly hidden/ignored.

Threads in Java

Copyright © 2021, Oracle and/or its affiliates

14

• java.lang.Thread

• The Java runtime is well positioned to implement threads.

• Resizable stacks (possible b/c we only need to support Java).

• Context-switching in user-mode.

• Pluggable schedulers, default optimised for transaction
processing.

Threads in Java

Copyright © 2021, Oracle and/or its affiliates

15

When code in a virtual thread calls an I/O method in the JDK,
 suspend the virtual thread,
 start a non-blocking I/O operation in the OS,
 the scheduler schedules another virtual thread,
 when I/O completes re-submit waiting thread to scheduler.

Threads in Java

Copyright © 2021, Oracle and/or its affiliates

16 Copyright © 2021, Oracle and/or its affiliates

17

virtual threads

“carrier” platform threads managed by a scheduler

Copyright © 2021, Oracle and/or its affiliates

Copyright © 2020, Oracle and/or its affiliates

C++/Rust

Go
Kotlin
JavaScript

Java

C# Erlang

async/await User-Mode Threads

18

Zig

Concurrency
Copyright © 2020, Oracle and/or its affiliates19

Algorithm (semantic)

Expression (syntactic)

(an abstract description of) What the computer does

How the algorithm is written (in a specific programming language/paradigm)

Copyright © 2020, Oracle and/or its affiliates20

Concurrency: The Algorithmic View

Schedule multiple largely independent tasks to a set of computational resources

Performance: throughput (tasks/time unit)

Parallelism: The Algorithmic View
Speed up a task by splitting it to sub-tasks and exploiting multiple processing units

Compe
titio

n

Coope
ratio

nPerformance: latency (time unit)

Copyright © 2020, Oracle and/or its affiliates21

Concurrency: The Syntactic View
• ; — Sequential composition

E.g X;Y, await X;Y, X.andThen(Y)

• | — Parallel composition

E.g. Thread.start(X), Promise.submit(X)

• (a|b);c — join

E.g. Thread.join, Future.get

• assignment/channels/locks/IO

a;((b;c)|(d|(e;f));g));h
Copyright © 2020, Oracle and/or its affiliates22

E.g. a transaction
Process: Unit of Concurrency

• Code (writing/reading)

• Troubleshooting: stack traces, debugger single-stepping

• Profiling

Copyright © 2020, Oracle and/or its affiliates23

Process
a;b;c;d = (a;b);(c;d)

Copyright © 2020, Oracle and/or its affiliates

(Nondeterminism https://youtu.be/9vupFNsND6o)
24

https://youtu.be/9vupFNsND6o
https://youtu.be/9vupFNsND6o

foo() {
 ...
 bar();
 ...
}

bar() {
 ...
 baz();
 ...
}

baz() {
 ...
}

Copyright © 2020, Oracle and/or its affiliates

Thread

25

Thread
foo() {
 ...
 bar();
 ...
}

bar() {
 ...
 baz();
 ...
}

baz() {
 ...
}

Copyright © 2020, Oracle and/or its affiliates

Call Stack

26

Async/Await
async foo() {
 ...
 await bar();
 ...
}

async bar() {
 ...
 await baz();
 ...
}

async baz() {
 ...
}

Copyright © 2020, Oracle and/or its affiliates27

Thread vs. Async/Await
Scheduling/interleaving points

Thread:

async/await: Nowhere except where explicitly allowed (with await)

Everywhere except where explicitly forbidden (with a CS)

Copyright © 2020, Oracle and/or its affiliates28

Thread vs. Async/Await

JavaScript

Scheduling/interleaving points

Copyright © 2020, Oracle and/or its affiliates

Thread:

async/await: Nowhere except where explicitly allowed (with await)

Everywhere except where explicitly forbidden (with a CS)

29

Thread vs. Async/Await
Implementation

Thread:

async/await: Can be implemented in the compiler frontend

Requires integrating with the implementation of
subroutines (control over backend)

Copyright © 2020, Oracle and/or its affiliates30

Thread vs. Async/Await
Implementation

Thread:

async/await: Can be implemented in the compiler frontend

Kotlin

Copyright © 2020, Oracle and/or its affiliates

Requires integrating with the implementation of
subroutines (control over backend)

31

Thread vs. Async/Await

Thread:

async/await: Can be excluded

Yes (requires large/resizable stacks)

Recursion & virtual calls

Copyright © 2020, Oracle and/or its affiliates32

Thread vs. Async/Await

Thread:

C++/Rust

async/await: Can be excluded

Yes (requires large/resizable stacks)

Copyright © 2020, Oracle and/or its affiliates

Recursion & virtual calls

33

Resizable Stack

• Transparent allocation

• Efficient allocation

• No internal pointers/tracked pointers (no FFI)

Copyright © 2020, Oracle and/or its affiliates34

Performance

Latency — How long an operation takes (s)

Throughput — How many operations complete per time unit (ops/s)

Impact — How much a metric would improve with full optimisation (%)

Copyright © 2020, Oracle and/or its affiliates35

Syntactic Concurrency: Generators et al.

• Updating simulation entities in a frame

• Generators (two processes with an unbuffered channel)
def rev_str(my_str):
 length = len(my_str)
 for i in range(length - 1, -1, -1):
 yield my_str[i]

for char in rev_str("hello"):
 print(char)

Copyright © 2020, Oracle and/or its affiliates36

37Copyright © 2020, Oracle and/or its affiliates

• Impact: 100%

• Best case latency: ~0ns (monomorphic, fits in cache)

Context-Switching Impact: Generators

37

L = λW

Concurrency: Transactions

Copyright © 2020, Oracle and/or its affiliates38

λ=L/WThroughput:

Context-switch impact on throughput: t/µ

t
µ

— Mean context-switch latency

— Mean wait (I/O) latency

Copyright © 2020, Oracle and/or its affiliates

https://inside.java/2020/08/07/loom-performance/

39

https://inside.java/2020/08/07/loom-performance/
https://inside.java/2020/08/07/loom-performance/

40Copyright © 2020, Oracle and/or its affiliates

• Impact: low if blocking for external events

• Best case latency: 60ns (polymorphic, doesn’t fit in cache) (1.5% impact)

• Target latency for ≤5% impact: ≤200ns

Context-Switching Impact: Transactions

40

Conclusion

• Control over backend

• Rare I/O in FFI

• No internal pointers/pointers tracked

• Efficient and transparent stack resizing

• Threads already in the platform, libraries and tooling

Copyright © 2020, Oracle and/or its affiliates41

Copyright © 2020, Oracle and/or its affiliates

C++/Rust

Go
Kotlin
JavaScript

Zig

Java

C# Erlang

async/await User-Mode Threads

42

Copyright © 2020, Oracle and/or its affiliates

Thank you

43

