Никита Жевелков

PT ISIM Tech Lead

Проектирование, разработка и поддержка тестов обновлений для продуктов с монолитной архитектурой

Никита Жевелков

За что отвечаю

Технологическая составляющая обеспечения качества продукта

Эффективая имплементация автоматизации в процесс выпуска релиза

Технологии автоматизации тестирования, инструменты и практики AQA

•01

Про продукт и проблемы проверки обновлений

PT ISIM

Система глубокого анализа технологического трафика.

Обеспечивает поиск следов нарушений информационной безопасности в сетях АСУ ТП >

Распределенный монолит

Сервисы с большой связанностью между собой, вплоть до невозможности работы одного без другого

>

Особенности продукта с точки зрения обновлений

Есть множество различных комбинаций обновлений продукта относительно параметров, таких как версии, поставки, ОС, виды доставок пакета обновления

Проверка обновлений

Проверка инсталлятора

Проверка обновлений в рамках различных тестов

Проверка обновлений инсталлятора

С чего и на что мы можем обновиться.

Обновление может быть

- мажорным (4.3.х → 4.4.х)
- минорным (4.4.x → 4.4.y, y > x)

Поставки

- proview
- netview
- misim
- ovckiosk
- кюзк
 экспертиза

- debian stretch
- debian buster
- astra linux

Доставка пакета обновлений

- offline
- online

Проблемы обновления

\Leftrightarrow

Масштабируемость

Для декартового произведения множеств продуктов, версий, поставок, ОС, доставок

- Количество продуктов = 6
- Количество версий = 4 (З мажора + 1 минор)
- Количество доставок пакета обновлений = 2 (онлайн, офлайн)
- OC = 4 (stretch, buster, astra voronezh, astra smolensk)
- Итого = 6 × 4 × 2 × 4 = 192

Ииграция данных

Необходимо проверять, что после обновления данные мигрировали корректно

- Проверка целостности данных
- Проверка валидности данных

Проверка работоспособности

Проверка работоспособности: после обновления продукт находится в рабочем состоянии

- Проводим тестирование от простого к сложному
- Отправляем отчет о тестах на почту

Проблемы обновления

}

Масштабируемость

Для декартового произведения множеств продуктов, версий, поставок, ОС, доставок

- Количество продуктов = 6
- Количество версий = 4 (З мажора + 1 минор)
- Количество доставок пакета обновлений = 2 (онлайн, офлайн)
- OC = 4 (stretch, buster, astra voronezh, astra smolensk)
- Итого = 6 × 4 × 2 × 4 = 192

Миграция данных

Необходимо проверять, что после обновления данные мигрировали корректно

- Проверка целостности данных
- Проверка валидности данных

Проверка работоспособности

Проверка работоспособности: после обновления продукт находится в рабочем состоянии

- Проводим тестирование от простого к сложному
- Отправляем отчет о тестах на почту

Проблемы обновления

Масштабируемость

Для декартового произведения множеств продуктов, версий, поставок, ОС, доставок

- Количество продуктов = 6
- Количество версий = 4 (3 мажора + 1 минор)
- Количество доставок пакета обновлений = 2 (онлайн, офлайн)
- OC = 4 (stretch, buster, astra voronezh, astra smolensk)
- Итого = 6 × 4 × 2 × 4 = 192

Ииграция данных

Необходимо проверять, что после обновления данные мигрировали корректно

- Проверка целостности данных
- Проверка валидности данных

1

Проверка работоспособности

Проверка работоспособности: после обновления продукт находится в рабочем состоянии

- Проводим тестирование от простого к сложному
- Отправляем отчет о тестах на почту

Проверка работоспособности

>

Проверка rc-инсталятора >

Проверка логов сервисов на отсутсвие ошибок после обновления >

Проверка целостности данных

>

Проверка UI

>

Отрабатывают все пользовательские кейсы в интерфейсе

10

Тестирование инсталлятора продукта

•02

Узлы Overview Center, которые подключены к PT ISIM Overview Center

Узлы View Sensor (proView или netView)

PT ISIM Overview Center

Продукт линейки РТ ISIM, предназначенный для сбора информации с подключенных к нему узлов

OVC обновляет подключенные к нему сенсоры ОVС собирает информацию об инцидентах с сенсоров

Схема онлайн-обновления

1 🔵 Одна ОС

Подключаем сенсоры к OVC, скачиваем через OVC «новую версию» с GUS на сенсоры. Обновляем сенсоры через OVC Обновление считается успешным, если пройдены все этапы тестирования от rc=0 до e2e-тестов

Обновление считается успешным, если пройдены все этапы тестирования от rc=0 до е2е-тестов

14

Схема офлайн-обновления

Обновляем x.y на z.t.deb9, stretch \rightarrow buster, z.t.deb9 \rightarrow z.t.deb10; x >= z, y > t

Обновление считается успешным, если пройдены все этапы тестирования от rc=0 до е2е-тестов

Полная схема обновлений

>

Таким образом мы приходим к гибкому формату обновлений, которые регулируются конфигами и переменными в рамках CI/CD

Инструменты для тестирования обновлений

Для CI/CD-части проверки обновлений

>

Нужна система управления репозиториями кода

Наш выбор GitLab

>

Нужна система оркестрации для управления виртуальными машинами

Инструменты для тестирования обновлений

Для CI/CD-части проверки обновлений

>

Нужен гипервизор и пакет управления виртуальными машинами

Наш выбор VMware vSphere

>

Нужен язык программирования для расширения функциональности Ansible

Может по заданной ему конфигурации создавать нужный пайплайн для тестирования обновлений

Требования к инструменту для запуска тестов обновлений

Для проверки инсталлятора

Должен быть легко поддерживаемым

Легко расширяемым

Нативным для любого пользователя

products: Package: upgrades_from: stretch: proview: versions: 4.2: link 4.3: link buster: netview: versions: 4.3: link upgrades_to: stretch: proview: versions: 4.4: link buster: netview: versions: 4.4: link

Конфиг для управления обновлениями

>

upgrade_config.yml

конфиг, в котором структурированно представлена модель, содержащая в себе иерархию: продукт, поставка, версия (версии)

products: Package:

Конфиг для управления обновлениями

>

upgrade_config.yml

Конфиг, в котором структурированно представлена модель, содержащая в себе иерархию: продукт, поставка, версия (версии)

>

Products OVC, Package, Rules, misim, Kiosk upgrades_from: upgrades to:

Конфиг для управления обновлениями

upgrade_config.yml

Конфиг, в котором структурированно представлена модель, содержащая в себе иерархию: продукт, поставка, версия (версии)

>

upgrades_from С чего хотим обновляться

>

Products OVC, Package, Rules, misim, Kiosk

upgrades_to На что хотим обновляться oroducts: Package: upgrades_from stretch:

> proview: versions: 4.2: link 4.3: link

buster:

netview: versions: 4.3: link upgrades_to: stretch:

proview: versions: 4.4: link

buster:

netview: versions: 4.4: link

Конфиг для управления обновлениями

upgrade_config.yml

Конфиг, в котором структурированно представлена модель, содержащая в себе иерархию: продукт, поставка, версия (версии)

>

upgrades_from С чего хотим обновляться

>

Products OVC, Package, Rules, misim, Kiosk

иpgrades_to На что хотим обновляться

> OS

stretch, buster, smolensk, voronezh

products: Package: upgrades_from stretch:

proview:

versions: 4.2: link 4.3: link ouster: netview:

versions: 4.3: link upgrades_to: stretch:

proview:

versions: 4.4: link buster: netview:

> versions: 4.4: link

Конфиг для управления обновлениями

;

upgrade_config.yml

Конфиг, в котором структурированно представлена модель, содержащая в себе иерархию: продукт, поставка, версия (версии)

stretch, buster, smolensk, voronezh

>

OS

upgrades_from С чего хотим обновляться >

Products OVC, Package, Rules, misim, Kiosk

upgrades_to На что хотим обновляться

Поставки proview, netview versions: versions: versions: versions:

4.4: link

Конфиг для управления обновлениями

upgrade_config.yml

Конфиг, в котором структурированно представлена модель, содержащая в себе иерархию: продукт, поставка, версия (версии)

>

OS

upgrades_from С чего хотим обновляться >

Products OVC, Package, Rules, misim, Kiosk

upgrades_to На что хотим обновляться

Поставки proview, netview

Versions

Версии, которые мы поддерживаем в этом релизе при обновлениях

stretch, buster, smolensk, voronezh

4.2: link 4.3: link 4.3: link 4.4: link 4.4: link

Конфиг для управления обновлениями

upgrade_config.yml

Конфиг, в котором структурированно представлена модель, содержащая в себе иерархию: продукт, поставка, версия (версии)

upgrades_from С чего хотим обновляться >

Products OVC, Package, Rules, misim, Kiosk

upgrades_to На что хотим обновляться

Поставки proview, netview

OS stretch, buster, smolensk, voronezh

Versions

Версии, которые мы поддерживаем в этом релизе при обновлениях

> Link

Ссылка в хранилище на артефакт, подходящий под всю иерархию

.gitlab-ci.yml содержит последовательный набор всевозможных этапов пайплайна для прохождения любого варианта тестов обновлений

Также в него импортируются файлы, содержащие декомпозированные наборы этапов прохождения пайплайна и переменные, определенные внутри этих файлов и пришедшие из запуска пайплайна

По умолчанию в тестах обновления берется продукт ISIM поставки proview. Остальные поставки определяются отдельными переменными и задачами внутри структуры файлов CI/CD

- gittab-ci.ymi Lg 29.73 KiB				
1	# INCLUDES			
	include:			
	- 'releases/OVC.yml'			
	- 'releases/3_1.yml'			
	- 'releases/3_3.yml'			
	- 'releases/4_1.yml'			
	- 'releases/4_2.yml'			
	- 'releases/4_3.yml'			
	- 'releases/4_4.yml'			
10	- 'rules_vars.yml'			
11				
12	# STAGES			
13				
14	stages:			
15	- clone VM			
16	- install product			
	- add VMs to OVC			
18	- connect OVC to GUS			
19	- collect and dump data			
20	- product update			
21	- dump data			
22	- compare collected data			
23	- send report email			
24	- OS update			
25	- product update for buster			
26	- dump data buster			
27	- compare collected data buster			
28	- rules update			
29	- detects tests			
30	- send report email data buster			
31				
32	#IOBS			

На примере одной из задач всего пайплайна тестов обновлений рассмотрим структуру файлов и декомпозицию задач

> В файле .gitlab-ci.yml определяем задачу по клонированию машины для проверки обновлений продукта релизной версии 4.3

Создаем три варианта задачи:

- → для онлайн-обновления
- для офлайн-обновления
- → для офлайн-обновления поставки OVC

clone VM for 4.3 (offline): extends: - .clone_vm_release_4_3_offline clone VM for OVC 4.3 (offline): extends: - .clone_ovc_release_4_3_offline clone VM for 4.3 (online): extends: - .clone_vm_release_4_3_online

Так выглядит структура файла releases/4_3.yml, который мы импортировали в .gitlab-ci.yml

Определены общие переменные для всех задач, которые присущи релизу 4.3

Виден еще один уровень вложенности у якорей при декомпозиции задач из .gitlab-ci.yml. Они включают в себя другие якоря из файла vars_and_anchors.yml 🔁 4_3.yml 🖺 4.18 KiB

	include:
	- 'vars_and_anchors.yml'
	.4-3-offline-variables: &4-3-offline-variables
	VERSION: "4.3"
	OS: \$TARGET_OS
	POSTFIX: \$COMMON_OFFLINE_POSTFIX
10	.4-3-online-variables: &4-3-online-variables
11 12	VERSION: "4.3"
12 13	OS: \$TARGET_OS POSTFIX: \$COMMON ONLINE POSTFIX
14 15	.dump-directory: &dump-directory
	MINOR OS DIRECTORY: /root/data dump for 4 3 \$TARGET OS
10	
	# CLONE VM
	.clone_vm_release_4_3_offline:
	variables:
21	<<: *4-3-offline-variables
	extends:
	clone_vm
	rules_for_offline_common
	.clone_ovc_release_4_3_offline:
	variables:
	<<: *4-3-offline-variables
	extends:
	clone_vm
	rules_for_ovc_offline
	.clone_vm_release_4_3_online:
	<pre>variables: <<: *4-3-online-variables</pre>
	<<: *4-3-online-variables extends:
	extends: clone_vm
37 38	cione_vm rules_for_online
	# INSTALL PRODUCT

vars_and_anchors.yml — файл, включащий в себя все возможные переменные, максимально декомпозированные задачи и правила

Определены правила для включения задачи в пайплайн или исключения из пайплайна

 \checkmark

Определены переменные различного рода, начиная переменными, задающими параметры стенда, заканчивая переменными, которые указывают путь к скрипту запуска

Определены якоря, с которых начинается «матрешка» вложенности, доходящая до файла .gitlab-ci.yml

		39 .clone_vm:	
		40 stage: clone VM	
		41 image: docker-isim.ptsecurity.ru/isim-ansible:release-4-4	
		42 allow_failure: false	
		43 extends: .deploy-servers	
		44 variables:	
		45 <<: *deploy-variables	
		46 <<: *ansible-variables	
		47 <<: *scripts-variables	
		48 <<: *product-version-variables	
		49 <<: *postfix-variables	
		50 script:	
		51 - bash \$RUN_SCRIPT_CLONE_VM	
		52 artifacts:	
		53 paths:	
		54 - \$CI_PROJECT_DIR/stand_ip	
		55 when: on_success	
		56	
		57 .install_product:	
102 .scripts-variables: &scripts-variables			
		RUN_SCRIPT_CLONE_VM: "deploy_scripts/clone_vm.sh"	
		RUN_SCRIPT_INSTALL_PRODUCT: "deploy_scripts/install_product.sh"	
		RUN_SCRIPT_ADD_SENSORS_TO_OVC: "deploy_scripts/add_sensors_to_ovc.sh"	
	106 107	RUN_SCRIPT_ENV_PREPARE: "deploy_scripts/env_prepare.sh" RUN_SCRIPT_ENV_DUMP: "deploy_scripts/env_dump.sh"	
	108	RUN SCRIPT COMPARE DATA: "deploy scripts/compare data.sh"	
		RUN_SCRIPT_ONLINE_UPDATE: "deploy_scripts/online_update.sh"	
	110	RUN_SCRIPT_OVC_TO_GUS: "deploy_scripts/ovc_to_gus.sh"	
	111	RUN_SCRIPT_OS_UPGRADE: "deploy_scripts/os_upgrade.sh"	
	112	RUN_RULES_UPGRADE: "deploy_scripts/rules_upgrade.sh"	
	113	RUN_SCRIPT_SEND_REPORT: "deploy_scripts/send_report.sh"	
		rules_for_offline_common:	
		rules: - if: \$CI_PIPELINE_SOURCE == "web" && (\$MAJOR_VERSION == \$VERSION \$FULL == "true") && (\$OFFLINE == "true") && \$PRODUCT != "OVC"	

.rules_for_offline_package:

ules for offline package update on bust

- if: \$CI_PIPELINE_SOURCE == "web" && (\$MAJOR_VERSION == \$VERSION || \$FULL == "true") && \$PRODUCT == "Package" && (\$OFFLINE == "true")

Запуск Ansible-плейбука

ansible-playbook \$playbooks_dir/test-upgrade/clone_vm.playbook

- -e "vmware_guest_vm_name=\$vm_name" \
- -e "vm_name_to_clone=\$vm_name_to_clone" \
- -e "ansible_user=\$vm_user" \
- -e "ansible_password=\$vm_password" \
- -e "domain_name=\$vm_domain_name" `
- -e "vm_owner=\$vm_owner" \
- -e "vm_ttl_action=\$vm_ttl_action" \
- -e "vm_ttl=\$vm_ttl" \

```
-e "{\"resource_pool\": \"$resource_pool\"}" \
```

- -e "cluster=\$cluster" \
- -e "{\"upload_licence\": \$upload_licence}" \
- -e "{\"disable_firewall\": \$disable_firewall}" \
- -e "{\"disable_training_mode\": \$disable_training_mode}" \
- -e "pipeline_id=\$CI_PIPELINE_ID" -vvv 2>&1 | tee stdout.log

ල <u>Статья «Пособие</u> по Ansible» на Хабре >

Все шелл-скрипты, которые определены в директории deploy_scripts/ служат для вызова Ansible-плейбука и передачи в этот плейбук нужных переменных для его выполнения

>

Запуск плейбуков происходит в докер-контейнере Ansible, образ которого мы собираем в отдельном репозитории

>

Все манипуляции с виртуальными машинами происходят на VMware vSphere через API в отдельной роли Ansible

Итоги тестирования инсталлятора

Время и выводы

Минимальное время

Все виды проверок запускаются параллельно

 $\stackrel{}\longleftrightarrow$

Структура CI/CD сделана так, чтобы можно было легко масштабировать конфигурации проверок инсталлятора

•03

Тестирование продукта после обновления

Тестирование продукта после обновления

Проверка успешного завершения инсталлятора

Проверка, что rc=0 и что в логах инсталятора нет ошибок

Виды проверок и тестов для определения качества продукта после обновления

Проверка логов сервисов на отсутсвие ошибок после обновления

Проводим bvt-тестирование

Тестирование продукта после обновления

Проверка миграции данных

Написали фреймворк для сравнения дампов данных со стенда

Виды проверок и тестов для определения качества продукта после обновления

Проверка UI

Проводим smoke-тестирование

Тестирование продукта после обновления

Отрабатывают все пользовательские кейсы в интерфейсе

Проводим е2е-тестирование

Виды проверок и тестов для определения качества продукта после обновления

Проверка обновлений экспертизы

Тесты экспертизы с помощью написанного нами для этого фреймворка

 (\rightarrow)

От версии к версии продукта данные могут менять свой формат, наполнение

Проверка Миграции Данных

 (\rightarrow)

Важно проверять, что данные не изменились и не потерялись во время обновлений, так как продукт следит за активностью в сети, копит и хранит важные данные для детектирования угроз

 (\rightarrow)

Потеря таких данных критична и несет за собой репутационные риски для компании

Проверка Миграции Данных

Анализ трафика сетей АСУ ТП.
Поиск следов нарушений ИБ
и кибератак

 $\left(\rightarrow \right)$

Анализаторы трафика, которые слушают сетевой интерфейс и записывают результаты разбора трафика

Проверка Миграции Данных

 \bigcirc

Сенсор мы наполняем данными, пуская трафик через сетевой интерфейс

Эмулируем различную

активность на сенсоре

пользовательскую

Трафик готовится заранее с помощью библиотеки РСАР

 \bigcirc

Делаем слепок данных на сенсоре, используя API, так как API меняется намного реже, чем БД

REST API формат данных JSON

\bigcirc

 \rightarrow

Перед началом обновления наполнить сенсор данными и сделать их дамп

Проверка Миграции Данных

После каждого пройденного обновления в рамках одного пайплайна снова делаем дамп данных с сенсора

 \bigcirc

После этого нужно сравнить их целостность с дампом, полученным на предыдущем этапе в рамках одного пайплайна

Проверка Миграции Данных

Data mapping

Целостность данных для всех возможных записей выборки

 \bigcirc

 \bigcirc

Никакие данные не должны дублироваться во время миграции

```
"x": null,
"name": "#10 Fujitsu",
"interfaces": [
     "mac": "90:1B:0E:A2:8F:E5",
    "vlan": [],
"order": 1,
"id": "16",
    "last activity": "2024-03-06T09:05:07.938Z",
   "ip": null,
"interface_vendor": "Fujitsu",
"description": null
 "group_id": null.
"ŏs": 'nūll,
"group_name": null,
"description": null,
"importance": 0,
"has connected devices": false,
"id": "10",
"y": null,
"vendor": "Fujitsu",
"incidents_relation": "source",
"last_activity": "2024-03-06T09:05:07.938Z",
"exclusions_counter": 0,
"authorized": false,
"host_type": "unknown",
"violations_counter": 0,
"violations": []
```

```
"x": null.
 "host name": "#10 Fujitsu ".
 "interfaces": {
        "new":
    mac": "90:1B:0E:A2:8F:E5".
     "vlan": [],
"order": 1,
    "id": 16,
     "last activity": "2024-03-06T09:05:07.938Z",
     "ip": null,
    "interface_vendor": "Fujitsu",
"description": null
 "group_id": null,
"OS": null,
 "group_name": null,
"importance": 0,
 "has connected devices": false,
 "id": "10"
"y": null,
"vendor": "Fujitsu",
"incidents_relation": "source",
"last_activity": "2024-03-06T09:05:07.938Z",
"exclusions_counter": 0,
"authorized": false,
"host_type": "unknown",
"description": null,
```

```
"x": null,
"name": "#10 Fujitsu",
```

"host name": "#10 Fujitsu ",

```
"x": null,
"name": "#10 Fujitsu",
"interfaces": [
   "mac": "90:1B:0E:A2:8F:E5",
  "vlan": [],
"order": 1,
"id": "16",
   "last activity": "2024-03-06T09:05:07.938Z",
  "ip": null,
"interface_vendor": "Fujitsu",
"description": null
"group_id": null.
```

```
"interfaces": {
    "new":
  "mac": "90:1B:0E:A2:8F:E5",
  "vlan": [],
  "order": 1,
  "id": 16.
  "last activity": "2024-03-06T09:05:07.938Z",
  "ip": null,
  "interface_vendor": "Fujitsu",
"description": null
```

44

```
"violations counter": 0,
"violations": []
```

```
"description": null,
"importance": 0,
"has_connected_devices": false,
'id": "10",
```

"authorized": false, "hostitype" "unknown", "description": null,

```
"id": "16",
'last activity": "2024-03-06T09:05:07.938Z".
```

"id": 16. last activity": "2024-03-06T09:0

Проблемы при сравнении дампов

Разный уровень вложенности данных

Разный тип данных

Разный нейминг данных

Разное наполнение данными

Маппинг данных

По каждой компоненте продукта и для каждого релиза подготовливаем список данных для миграции

- Известно, какие данные не нужно сравнивать
- Известны уровни вложенности
- Известно, какие типы данных в какие мигрировали

Благодаря этим знаниям мы можем манипулировать данными

Таким образом мы имитируем миграцию данных от «старых» релизов к «новым» и в итоге сравниваем дампы эмулированных и мигрированных данных между собой

```
Base_Topology.__init__(self)
self.dump_path = os.path.join(dump_dir, 'topology.json')
self.extra_hosts_fields = {
    'hosts': [
        'violations',
        'description',
        'exclusions_counter',
        'importance',
        'violations counter'
    ],
    'interfaces': [
        'description',
        'vlan'
    ],
self.fields_for_swap
    'source_mac',
    'source_authorized',
    'source_type',
    'source_ip',
    'source_text',
    'target_mac',
    'target_authorized',
    'target_type',
    'target_ip',
    'target_text',
self.data_dump = self.swap_old_fields_to_new(self.data_dump)
self.alerts = self.load_data_to_template(
    'alerts',
    self.data_dump,
    self.alerts_template,
    self.extra_hosts_fields
                                                            49
```

alerts: impact: id: critical: progress: status: type: status_changed: start: end: group: capacity: change: severity: label: source_mac: source authorized: source type: source ip: source text: target_mac: target_authorized: target_type: target_ip: target text:

Шаблон для сортировки данных

Файл alerts_template.yml содержит все возможные ключи из json-файла по данной компоненте. Это нужно для того, чтобы список ключей был одинаковым для всех данных, чтобы приводить их к одному виду

Это работает, если фрагмент данных имеет в себе id. Только в этом случае мы сможем правильно сортировать и сравнивать данные между собой, иначе будет невозможно понять, что с чем сравнивать и как сортировать

Сравнение данных

🔁 Check_Difference.py 🖞 9.62 KiB

import json 3 from jsondiff import t diff 4 from Messages import (error_by_section, error_by_section_without_id, error key not found, error len) 6 from releases.release 3 1 import Release 3 1 7 from releases.release_3_3 import Release_3_3 8 from releases.release_4_1 import Release_4_1 9 from releases.release 4 2 import Release 4 2 10 from releases.release_4_3 import Release_4_3 11 from releases.release_4_4 import Release_4_4 14 class Check Diffrenece(): Class contains comparing methods for compare data between two releases. init - method lets the class initialize the object's attributes and serves def __init__(self): Class setups. skip msg - message for skiped fields in compare ignore_fields - fields dont needed in comparing self.skip msg = 'This field dont exist in previous sensor version' self.ignore_fields = ['last_activity'] @staticmethod def compare_two_values(first, second): Compare two values.

return True if values equals

>

Check_Difference -

класс, который содержит все возможные методы, чтобы сравнивать максимально глубоко и выборочно данные JSON-формата

>

Сравнения списков, внутри которых находятся словари

>

Сравнение словарей, если есть элементы **с id**

Сравнение значений

>

Мало знать, что данные изменились — нужно знать **точное место этих изменений**. Ведь данные могут быть размером в мегабайты

>

Сравнение словарей, внутри которых находятся списки

Сравнение словарей без id

Все эти методы как помогают друг другу сравнивать объекты между собой, так и работают атомарно

Время тестирования

Проверка сборки на работоспособность

Выводы

Выводы

Не забывайте проверять обновления в двух частях: инсталлятор и работоспособность

Проблему масштабируемости нужно решать

Проверка миграции данных — это важно

Никита Жевелков PT ISIM Tech Lead

