
Particles2D

quasilyte @ GoFunc 2024

What? Why?

Reasons to care about this talk:

● You’re curious about game development in Go

What? Why?

Reasons to care about this talk:

● You’re curious about game development in Go
● You’re into weird optimizations

What? Why?

Reasons to care about this talk:

● You’re curious about game development in Go
● You’re into weird optimizations
● You’re interested in VFX generated via code

What? Why?

Reasons to care about this talk:

● You’re curious about game development in Go
● You’re into weird optimizations
● You’re interested in VFX generated via code
● You’re working on a game called NebuLeet

Agenda

● Intro
● VFX methods
● Particle system overview
● Particles layout
● Batch rendering
● GPU particles

quasilyte tech

● I’m making games using Go (Ebitengine),
● maintaining gamedev libraries for Go,
● creating related learning materials,
● organizing Russian-speaking Go gamedev community

Roboden

NebuLeet

Making games with Go

● 2D game engine
● Engine is written in Go
● Games are written in Go
● Covers many platforms

Making games with Go

Game engine

Code

Visuals

Sound

…
an

d
m

or
e

Making games with Go

Game engine

Code

Visuals

Sound

…
an

d
m

or
e

More specifically…

Game engine

Visuals VFX

Agenda

● Intro
● VFX methods
● Particle system overview
● Particles layout
● Batch rendering
● GPU particles

Creating visuals effects in games

Main tools:

● Shaders
● Using a bunch of Sprite and/or Animation objects
● Particle systems

+ combinations of these

Shader graphics

What is a shader

ShaderTexture A Texture B

Using sprites

Alpha decreases over time

Spawns trail sprites

What is a sprite

SpriteTexture

. . .

Position

Rotation

ebiten.Image

Sprites re-use the same texture

SpriteTexture

ebiten.Image

Sprite

Sprite

. . .

Position

Rotation

. . .

Position

Rotation

. . .

Position

Rotation

Particle system

Just particles

Holds Emitter

Using sprites

Alpha decreases over time

Spawns trail sprites

Particle system

Just particles

Holds Emitter

Particles are (very) lightweight sprites

ParticleTexture

ebiten.Image

Particle

Particle

● Less memory
● Better batching
● Ephemeral

Why do we need particle systems?

● Easy to learn and use (in comp. with shaders)

Why do we need particle systems?

● Highly customizable look via numeric parameters

Why do we need particle systems?

● High visual variation (procedural graphics)

Why do we need particle systems?

● Batch rendering and processing

Animation/Sprites + particles

Adds extra randomness and juiciness to your effects

w/o particles with particles

Agenda

● Intro
● VFX methods
● Particle system overview
● Particles layout
● Batch rendering
● GPU particles

Which particle system do I use?

● I was looking for a particle system for NebuLeet game

Which particle system do I use?

● I was looking for a particle system for NebuLeet game
● I didn’t find one (I wasn’t searching that well)

Which particle system do I use?

● I was looking for a particle system for NebuLeet game
● I didn’t find one (I wasn’t searching that well)
● I created my own (as a part of existing gfx package)

See github.com/quasilyte/ebitengine-graphics

Particles in action!

Particles in action!

Particle system overview

Texture

Particle system overview

TemplateTexture

Particle system overview

Emitter

Emitter

. . .

TemplateTexture

Particle system overview

Emitter

Emitter

. . .

TemplateTexture Renderer

Particle
Templates

● Texture
● All parameters
● Precomputed values
● Bound funcs
● No logic, just data

Templates are not always 1-to-N

Emitter

EmitterTemplateTexture Renderer

Template

Can’t re-use a template if different params are needed

Particle
Emitter

● Has a Template
● Has a world position
● Manages own Particles
● Advances Particle t
● Part of Update() tree

Particle
Renderer

● Stores Emitters
● Batch-renders Particles
● Computes simulate(t)
● Part of Draw() tree

Particles

Emitter

Particle

Particle

Particle

progress

progress

progress

Particle
Simulation

t

Particle
Simulation

t

Particle
Simulation

t

Agenda

● Intro
● VFX methods
● Particle system overview
● Particles layout
● Batch rendering
● GPU particles

Particle struct (the first draft)

type particle struct {

 progress float64 // t, [0, 1]

}

Particle struct (the first draft)

type particle struct {

 progress float64 // t, [0, 1]

}

Randomized speed?

Randomized direction?

Randomized lifetime?

Randomized scaling?

…

Randomized color?

Particle struct (naive version)

type particle struct {

 progress float64

 lifetime time.Duration

 scaling float64

 speed float64

 angle float64

 color color.RGBA

 pos [2]float64

}

Particle struct (naive version)

type particle struct {

 progress float64

 lifetime time.Duration

 scaling float64

 speed float64

 angle float64

 color color.RGBA

 pos [2]float64

}

64 bytes per particle

10000 particles = 640 kb

Particle struct (naive version)

type particle struct {

 progress float64

 lifetime time.Duration

 scaling float64

 speed float64

 angle float64

 color color.RGBA

 pos [2]float64

}

Particle struct (improved version)

type particle struct {

 progress float32

 lifetime time.Duration

 scaling float32

 speed float32

 angle float32

 color color.RGBA

 pos [2]float32

}

40 bytes per particle

10000 particles = 400 kb

66% of original size

Reducing the precision,
float64 -> float32

Particle struct

type particle struct {

 progress uint16

 lifetime uint16

 scaling float32

 speed float32

 angle float32

 color color.RGBA

 pos [2]float32

}

28 bytes per particle

10000 particles = 280 kb

46% of original size

Compressing time

1 unit = 1ms (delta*1000)
rounding error accumulation

Particle struct

type particle struct {

 progress uint16

 lifetime uint16

 scaling uint8

 speed uint8

 angle uint8

 color uint8

 pos [2]float32

}

16 bytes per particle

10000 particles = 160 kb

26% of original size

Storing “palette indices”

Fitting scaling/speed/etc in uint8

Example: a speed in range of [100, 200]

● Store the min value of parameter => 100

Fitting scaling/speed/etc in uint8

Example: a speed in range of [100, 200]

● Store the min value of parameter => 100
● Calculate the “value step”: max-min/255 => 0.39

Fitting scaling/speed/etc in uint8

Example: a speed in range of [100, 200]

● Store the min value of parameter => 100
● Calculate the “value step”: max-min/255 => 0.39
● Generate a random “seed” value [0-255] => 60

Fitting scaling/speed/etc in uint8

Example: a speed in range of [100, 200]

● Store the min value of parameter => 100
● Calculate the “value step”: max-min/255 => 0.39
● Generate a random “seed” value [0-255] => 60
● Store that “seed” inside the uint8 field

Fitting scaling/speed/etc in uint8

Example: a speed in range of [100, 200]

● Store the min value of parameter => 100
● Calculate the “value step”: max-min/255 => 0.39
● Generate a random “seed” value [0-255] => 60
● Store that “seed” inside the uint8 field
● The real value is computed as: min+(seed*step) => 123

Extra ideas

● Bucket-based particles
● Tiny particles (~8 bytes) with per-frame full re-calc
● Mapping user funcs into N precomputed points

Comparing with sprites (memory)

10000 particles ~ 160 kb

10000 sprite objects ~ 1360 kb

Sprites would also need to store extra state somewhere,
like animation progress

Agenda

● Intro
● VFX methods
● Particle system overview
● Particles layout
● Batch rendering
● GPU particles

Drawing process

Draw walks buckets and calls DrawBucket on them

Draw DrawBucket DrawBatch

Drawing process

DrawBucket groups Emitters in batches,
and then passes them to DrawBatch

Draw DrawBucket DrawBatch

Drawing process

DrawBatch generates vertices for every particle in the
batch, and then calls Ebitengine’s DrawTriangles

Draw DrawBucket DrawBatch

Renderer bucket

type rendererBucket struct {

 texture *ebiten.Image

 emitters []*Emitter

}

Comparing with sprites (rendering)

Particles: explicit & guaranteed batch rendering

Sprites: batch rendering is up to Ebitengine*

(*) Depends on various factors, like sprite draw order

Rendering method comparison (Ebitengine API)

DrawImage/particle: ~44000 particles at ~60 FPS*

DrawTriangles/batch: ~58000 particles at ~60 FPS*

(*) On my crappy laptop

Rendering method comparison (Ebitengine API)

DrawImage/particle: ~44000 particles at ~60 FPS*

DrawTriangles/batch: ~58000 particles at ~60 FPS*

Godot (for comparison): ~65000 particles at ~60 FPS*

(*) On my crappy laptop

Code generation in particle systems

Code generation can generate a specialized particle
renderer based on the template

CodeCompilerTemplate

Specialized (generated) renderer example

Given: template doesn’t use dynamic particle scaling

Result: the generated particle type has no “scaling”
property, the generated renderer has no code managing
the possibility of dynamic particle scaling.

Reduces memory and CPU requirements of particles

Agenda

● Intro
● VFX methods
● Particle system overview
● Particles layout
● Batch rendering
● GPU particles

GPU CPU

GPU particle systems

● Usually more efficient than CPU systems

GPU particle systems

● Usually more efficient than CPU systems
● Usually less feature-rich than CPU systems

GPU particle systems

● Usually more efficient than CPU systems
● Usually less feature-rich than CPU systems
● Usually require a shader compilation at run-time

GPU particle systems

● Usually more efficient than CPU systems
● Usually less feature-rich than CPU systems
● Usually require a shader compilation at run-time
● Usually have a different (more complicated) API

GPU particle systems

● Usually more efficient than CPU systems
● Usually less feature-rich than CPU systems
● Usually require a shader compilation at run-time
● Usually have a different (more complicated) API
● Dynamic parameter are harder (or impossible)

GPU particle systems

● Usually more efficient than CPU systems
● Usually less feature-rich than CPU systems
● Usually require a shader compilation at run-time
● Usually have a different (more complicated) API
● Dynamic parameter are harder (or impossible)

Can simulate much-much more particles at a lower cost

Shader generation at run-time

A Template is converted into a specialized Shader at
run-time (which will be compiled further by GPU)

Shader
Text

Particle
CompilerTemplate Shader

Compiler
Compiled

Shader

Kage and GPU stateless particles

● Like with a normal shader, particles depend on “noise”
● Particles don’t have individual state

Pros: can work with millions of particles for ~free

Cons: less features

Stateful particles are less efficient, but offer more feature

Stateless particles (snow)

Kage* and GPU stateful particles

● No vertex shader support
● No efficient data buffers support

We can still try to create something, but it may be
sub-optimal

(*) Kage is Ebitengine’s shader language

Textures as storage

A NxM texture can store information about N*M/K
particles, where K is number of “pixels” per particle

Textures as storage

Every pixel is vec4 - 4 float values of unspecified
precision (usually 16 or 32 bits)

{R, G, B, A}

Rendering process

Calculate the new state by rendering a current state into a
new state image

Current
State

New
State

Destination
Image

Rendering process

Render the particles using the new state texture onto the
destination image

Current
State

New
State

Destination
Image

Rendering process

Swap the current and new state buffers (without copying)

Current
State

New
State

Destination
Image

CPU vs GPU particles - which to use?

CPU vs GPU particles - which to use?

Which games benefit from particles?

Almost any game as they complement everything else.

Particles2D

quasilyte @ GoFunc 2024

Wishlist my game on Steam :)

https://store.steampowered.com/app/3024370/NebuLeet

