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Use Cases for Byte Code Engineering

Example Read Write
Compilers o o
Scripting Engines o
Static Analysis o
Dynamic Analysis o o

Reverse Engineering e
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Test Driven Bytecode Engineering

Creating or manipulating Java bytecode can be tricky
when working with low-level libraries like ASM. Writing
and maintaining tools on bytecode level should therefore
always be guided by comprehensive tests.



Generation



How to test class creation?
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Stack Frames

Data stack for method execution:

e Operand stack (push/pop)
e [.ocal variables (indexed access)

Fixed, predefined stack sizes:

e Defined in class files
e Checked by verifier



What if exception happens in generated code?



How to catch exception in generated code?



Stack Map Frames



Stack Map Frames

Java Virtual Machine Specification:

A class file whose version number is 50.0 or above must

be verified using the type checking rules given in this
section.

The type checker requires a list of stack map frames for
each method with a Code attribute.
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Stack Map Frames

Instructions Frame Java byte-code verification by
Nikita Lipsky at JPoint 2017
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Why not always COMPUTE_FRAMES?

e (Class hierarchy required to calculate stack map frames
from scratch

e Parent types might not (yet) be available

e Loading parent types might cause undesired sideffects



Incremental frames updates

e asm.ClassVisitor.visitFrame to adjust existing frames
without recalculation
e asm.AnalyzerAdapter to insert new ones



Analysis



Analysis

Example: Count executable source lines in a given class



Analysis
Executable Comments

class JaCoCoTarget {
static void main(String[] args) {
missedBranch(true);

}

static void missedBranch(boolean f) {
if (f) { // assertCovered(1, 1)
nop(); // assertCovered()
} else {
nop(); // assertNotCovered()

}
}
}
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The JDK May Play Tricks on You

e VM behaviour depends on class file version

e VM executes invalid class files (JDK-815718)

e javac produces inconsistent class files (JDK-8160928)
e VM might crash on valid class files (JDK-8216970)
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Lessons Learned for Bytecode Engineering

e Compiler, JVM, ASM and Spec may have different ideas
about valid bytecode.

e Implementations and semantic of bytecode may change
with classfile versions.

e You will see creepy error messages by JVM

e Test-first significantly speeds-up development cycles.

e Invest in maintainable and efficient test setups.



Thank you!

e https://github.com/marchof/cafebabe

e Marc Hoffmann, DE/CH, @marcandsweep

e Evgeny Mandrikov, RU/FR, @_Godin




