Let's make some OXCAFEBABE

Test-Driven Bytecode Engineering

Evgeny Mandrikov, Marc Hoffmann
#]Point #TDD #Bytecode

Moscow, 06.04.2019

1/37



Who we are?



Who we are?

Team behind #JaCoCo project




Who we are?

Team behind #JaCoCo project

e Marc Hoffmann, DE/CH, @marcandsweep




Who we are?

Team behind #JaCoCo project

e Marc Hoffmann, DE/CH, @marcandsweep
e Evgeny Mandrikov, RU/FR, @_Godin




Use Cases for Byte Code Engineering

Example Read Write
Compilers o o
Scripting Engines o
Static Analysis o
Dynamic Analysis o o

Reverse Engineering e



ASM - A Bytecode Manipulation Library

oy,

ClassReader

> Visitor

/ atess /

.

ClassWriter




ASM - A Bytecode Manipulation Library
/ woss / oy

%ﬁﬁﬁ

ClassReader » ClassWriter




Test Driven Bytecode Engineering

Creating or manipulating Java bytecode can be tricky
when working with low-level libraries like ASM. Writing
and maintaining tools on bytecode level should therefore
always be guided by comprehensive tests.



Generation



How to test class creation?



Stack Frames

Data stack for method execution:

e Operand stack (push/pop)
e [.ocal variables (indexed access)



Stack Frames

Data stack for method execution:

e Operand stack (push/pop)
e [.ocal variables (indexed access)

Fixed, predefined stack sizes:

e Defined in class files
e Checked by verifier



What if exception happens in generated code?



How to catch exception in generated code?



Stack Map Frames



Stack Map Frames

Java Virtual Machine Specification:

A class file whose version number is 50.0 or above must

be verified using the type checking rules given in this
section.

The type checker requires a list of stack map frames for
each method with a Code attribute.



Stack Map Frames

Instructions Frame

Operand Stack
Local Variables

i




Stack Map Frames

Instructions Frame

A

Operand Stack
Local Variables

M
M
\ 4
-
M
M




Stack Map Frames

Instructions Frame Java byte-code verification by
Nikita Lipsky at JPoint 2017

1|

Operand Stack
Local Variables

|
> Stack Map
Frame

\4

=
S




Why not always COMPUTE_FRAMES?

e (Class hierarchy required to calculate stack map frames
from scratch

e Parent types might not (yet) be available

e Loading parent types might cause undesired sideffects



Incremental frames updates

e asm.ClassVisitor.visitFrame to adjust existing frames
without recalculation
e asm.AnalyzerAdapter to insert new ones



Analysis



Analysis

Example: Count executable source lines in a given class



Analysis
Executable Comments

class JaCoCoTarget {
static void main(String[] args) {
missedBranch(true);

}

static void missedBranch(boolean f) {
if (f) { // assertCovered(1, 1)
nop(); // assertCovered()
} else {
nop(); // assertNotCovered()

}
}
}



The JDK May Play Tricks on You



The JDK May Play Tricks on You

e VM behaviour depends on class file version



The JDK May Play Tricks on You

e VM behaviour depends on class file version
e VM executes invalid class files (JDK-815718)




The JDK May Play Tricks on You

e VM behaviour depends on class file version
e VM executes invalid class files (JDK-815718)
e javac produces inconsistent class files (JDK-8160928)




The JDK May Play Tricks on You

e VM behaviour depends on class file version

e VM executes invalid class files (JDK-815718)

e javac produces inconsistent class files (JDK-8160928)
e VM might crash on valid class files (JDK-8216970)




Lessons Learned for Bytecode Engineering



Lessons Learned for Bytecode Engineering

e Compiler, JVM, ASM and Spec may have different ideas
about valid bytecode.



Lessons Learned for Bytecode Engineering

e Compiler, JVM, ASM and Spec may have different ideas
about valid bytecode.

e Implementations and semantic of bytecode may change
with classfile versions.



Lessons Learned for Bytecode Engineering

e Compiler, JVM, ASM and Spec may have different ideas
about valid bytecode.

e Implementations and semantic of bytecode may change
with classfile versions.

e You will see creepy error messages by JVM



Lessons Learned for Bytecode Engineering

e Compiler, JVM, ASM and Spec may have different ideas
about valid bytecode.

e Implementations and semantic of bytecode may change
with classfile versions.

e You will see creepy error messages by JVM

e Test-first significantly speeds-up development cycles.



Lessons Learned for Bytecode Engineering

e Compiler, JVM, ASM and Spec may have different ideas
about valid bytecode.

e Implementations and semantic of bytecode may change
with classfile versions.

e You will see creepy error messages by JVM

e Test-first significantly speeds-up development cycles.

e Invest in maintainable and efficient test setups.



Thank you!

e https://github.com/marchof/cafebabe

e Marc Hoffmann, DE/CH, @marcandsweep

e Evgeny Mandrikov, RU/FR, @_Godin




