
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Adding Generational Support to
Shenandoah GC
Kelvin Nilsen, Senior Development Engineer, Amazon Web Services
(work performed in collaboration with multiple members of Corretto JVM Team)

1

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

2

• Shenandoah overview and strengths

• Shenandoah limitations addressed by generational enhancements

• Architecture and Design of Generational Shenandoah

• Demonstration

• Project Status and Directions

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shenandoah GC

3

• Targets timeliness needs of 10 ms or below
• Typical pauses are around 5 ms, separated by concurrent execution phases of

50-500 ms
• Typical pause times decrease to 1 ms or below with concurrent root scanning, concurrent

reference processing, concurrent string deduplication in OpenJDK 17

• Trade offs vs. less concurrent GC approaches
• Requires larger heaps (works best with heap utilization below 30%)

• Lower allocation rates can run with higher heap utilization
• May experience throughput penalties (e.g. 10-15% vs. Parallel GC)

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Comparison of Shenandoah GC vs G1 and Parallel GC (OpenJDK 11)

4

0

1

10

100

4 8 12 16

C
lie

nt
 R

es
po

ns
e

Ti
m

es
 (m

s)

Heap Size (GBytes)

Client Response Times (ms) of Extremem CRP with Parallel,
G1, and Shenandoah GC vs Heap Size (Gbytes)

Parallel-avg Parallel-max G1-avg
G1-max Shen-avg Shen-max

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

One AWS Service switched to OpenJDK 11 Shenandoah: 9/2/2020

5

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Another AWS service switched to OpenJDK 11 Shenandoah: 9/29/2020

6

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shenandoah Overview

7

Pauses

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Parallel GC Comparison

8

• Application is stalled throughout marking, evacuation and updating, since these phases
are not “concurrent”

• But application throughput is higher overall, because no “coordination overhead” is
required between concurrent application and GC threads

No distinct
update-roots

phase

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

G1 GC Comparison

9

• Global marking is concurrent, but application is stalled during evacuation and updating of
references (young-gen collections are stop-the-world)

• G1 coordination overheads are greater than parallel GC, but lower than Shenandoah
• G1 places “soft bounds” on pause times by limiting the number of heap regions that are

collected during each evacuation pass

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shenandoah GC

10

• Targets timeliness needs of 10 ms or below
• Typical pauses are around 5 ms, separated by concurrent execution phases of

50-500 ms
• Typical pause times decrease to 1 ms or below with concurrent root scanning, concurrent

reference processing, concurrent string deduplication in OpenJDK 17

• Trade offs vs. less concurrent GC approaches
• Requires larger heaps (works best with heap utilization below 30%)

• Lower allocation rates can run with higher heap utilization
• May experience throughput penalties (e.g. 10-15% vs. Parallel GC)

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shenandoah GC with Generational Enhancements

11

• Targets timeliness needs of 10 ms or below
• Typical pauses are around 5 ms, separated by concurrent execution phases of

50-500 ms
• Typical pause times decrease to 1 ms or below with concurrent root scanning, concurrent

reference processing, concurrent string deduplication in OpenJDK 17

• Trade offs vs. less concurrent GC approaches
• Requires larger heaps (works best with heap utilization below 30%)

• Lower allocation rates can run with higher heap utilization
• May experience throughput penalties (e.g. 10-15% vs. Parallel GC)
• The young-gen memory area has generally very low memory utilization, so can sustain very

high allocation rates
• The old-gen memory area may have high memory utilization, but the allocation rate within

old-gen is very low, so old-gen concurrent GC can run infrequently at low priority

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

More Efficient Utilization of Heap Memory

12

• Whereas non-generational Shenandoah requires heap
utilization below ~30% for high allocation rates, Generational
Shenandoah will support the same pause time bounds as
Shenandoah while:

• Sustaining 4-16 times higher allocation rates
• Supporting old-gen utilization of 90% or higher, with
• Much smaller young-gen memory regions at utilization of 15-30%
• Enabling combined memory utilization of 75% or higher

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Comparing Shenandoah vs G1 on Strenuous Workload

13

1

10

100

1 000

10 000

640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

Responsiveness of Heapothesys Extremem PRP with G1 and Shenandoah
as Function of Heap Size (ms vs. MB)

G1 average G1 max Shenandoah average Shenandoah max

Let’s look a bit closer at why Shenandoah performs so poorly here

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Degenerated GC with Shenandoah

14

• Each concurrent Shenandoah GC pass is a race between the application and the
garbage collector

• GC racing to replenish free pool
• Application racing to consume memory

• Shenandoah tries to be smart about deciding when to start GC
• If it starts too soon, it wastes efforts doing more frequent GC than necessary
• If it starts too late, the application wins the race. When allocation pool is exhausted,

Shenandoah does “degenerated” stop-the-world GC
• Corretto JVM engineer William Kemper recently implemented improvements to make the

choice of when to start GC more effective

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

With 768 MB Heap, Shenandoah performed 381 degenerated GC out of 3,763
total GC passes during 10 minute execution run

15

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

Percent of CPU Time Consumed by Garbage Collection vs. Time (seconds
since JVM startup)

Pauses Concurrency Combined with Pauses

Build Out Data Structures Time-Triggered Client/Server Interactions Reclaim Data Structures

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Experimental Observations of What Shenandoah Does Well

16

• Concurrent execution of Shenandoah allows applications to run
without “GC pauses” as long as GC is able to win each race to
replenish allocation pool

• Low allocation rates (e.g. 512 MB/s or lower):
pauses bounded below 10 ms even at high (e.g. 90%) memory utilization

• High allocation rates (4 GB/s or higher):
limit utilizations to 30% or below to maintain pause times below 10 ms

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data-Driven Design for Generational Shenandoah

17

• Use two “instances” of the Shenandoah GC collector to concurrently collect
young-gen and old-gen memory

• When “most objects die young”:
• Young-gen memory has very high allocation rate and very low memory utilization
• Old-gen memory has very low allocation rate and relatively high memory utilization

• Young-gen collector runs very frequently at a high priority
• Old-gen collector runs rarely at a low priority

• Multiple young-gen collections run to completion while old-gen collector is working
• Between young-gen collections, all GC threads can focus attention on old-gen efforts
• While young-gen collection is active, very limited efforts dedicated to old-gen GC

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Comparison between Non-Generational and Generational GC on
Simulated Workload

18

20

30

40

50

60

70

80

90

100

5 7 9 11 13 15 17 19 21 23 25

G
B

 o
f S

in
gl

e-
G

en
er

at
io

na
l H

ea
p

Seconds of Execution Time

GB of Single Heap Utilization vs Time (seconds)

Assumes allocation rate of 10.8 GB/s,
live memory representation of 33.345 GB

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Generational GC Shrinks Heap Requirement by Two Thirds

19

0

5

10

15

20

25

30

0 5 10 15 20 25

Generational Shenandoah Heap Utilization (GB) vs time (s)

young utilization old utilization old & new

Assumes same cores dedicated to GC,
compressed OOPs space optimization

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Open Source Coordination

20

• JEP 440: Generational Shenandoah, authored by Bernd Mathiske, Kelvin Nilsen,
William Kemper, is under review (https://openjdk.java.net/jeps/404)

• Source is maintained at https://github.com/openjdk/shenandoah

https://openjdk.java.net/jeps/404

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Generational Shenandoah Design Tenets

21

• Don’t punish the mutator
• Prioritize young-gen GC efforts to sustain allocation rates
• Focus on single-socket deployments before NUMA
• Leverage open-source community
• Demonstrate incremental progress with manageable milestones
• Align milestones with product development progress
• Support production deployments with staged feature releases

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key Implementation Details

22

• Young-gen GC runs at high frequency, old-gen remembered set included in root set

• Remembered set scanning is concurrent

• Old-gen GC begins by sharing a concurrent root scan with young-gen GC

• While either young-gen or old-gen GC is concurrently marking, the SATB barrier is enabled

• If young-gen concurrent marking is enabled, each young-gen object referenced from within a SATB buffer is marked

• If old-gen concurrent marking is enabled, each old-gen object referenced from within a SATB buffer is marked

• If young-gen GC wants to run while old-gen GC is active, the entire gang of worker threads suspends efforts
on old-gen and focuses on young-gen GC

• After old-gen GC completes concurrent marking:

• Old-gen GC sets aside certain old-gen regions as candidates for future collection sets

• During each subsequent young-gen evacuation pass, a subset of old-gen candidates is folded into collection set

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architecture Overview

23

Young-Gen
GC

Old-Gen
GC

Mutators

Reference
Processing

Shared
Heap Memory

pr
ee

m
pt

resum
e

preempt

resume

Ex
ec

ut
e

in
 s

er
ie

s

execute in series

fetch/store

fetch/store

fe
tc

h/
st

or
e

fetch/
store

fetch/store

fe
tc

h/
st

or
e

ex
ec

ut
e

in
 s

er
ie

s

Coordinate with

read/write
 barrie

rs

Co
or

din
at

e
wi

th

re
ad

/w
rit

e
ba

rri
er

s

String
Deduplication

Class
Unloading

Heuristics

Ex
ec

ut
e

in
 s

er
ie

s

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Heap-Region State Transitions

24

Young-Gen
Heap Regions

Promoted by young-gen GC

Uncommitted
(Free)

Heap Regions

Old-Gen
Heap Regions

C
ol

le
ct

ed
 b

y
yo

un
g-

ge
n

G
C C

ollected by old-gen G
C

Allocated for TLAB or PLAB

Al
lo

ca
te

d
fo

r P
LA

BTLAB: Thread-Local Allocation Buffer

PLAB: Parallel Local Allocation Buffer
(Used for GC evacuations

and promotions)

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Our Accomplishments So Far

25

• Milestone 1: Pure young collection
• Milestone 2: Size-restricted young gen with scheduling heuristics
• Milestone 3: Tenuring and promotion
• Milestone 4: Per-region heap status visualization
• Milestone 5: Global collection after young collection
• Milestone 6: Young collection after global collection, repeat alternations
• Milestone 7: Concurrent old marking
• Milestone 8: Concurrent old and young collections

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visualization of Concurrent Old- and Young-Gen GC

26

Total heap size: 2 GB, with each
square representing 1 MB
316 MB allocated in ~2 sMarking has concluded that
percentage of memory in each
region is low, thus light green
coloring

Light green vertical line (trust me if
you can’t see it) indicates “Young
Marking”

Humongous region and
humongous continuation region
identified by concurrent marking

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visualization of Concurrent Old- and Young-Gen GC

27

We’ve now observed several young-
gen mark and evacuation passes

Objects that survive young-gen
pass are evacuated to “survivor
space” at far end of heap (below)

Colored borders represent region
age

Intensity of color represents percent
utilization

We’ve also triggered some old-gen
GC (purple lines in top history) for
heuristic “learning” purposes

But our old-gen does not yet hold
any objects

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visualization of Concurrent Old- and Young-Gen GC

28

Note that the survivor space now
has some regions with orange
borders (age 6)

Note that our humongous region
has been promoted into old-gen
without copying (circular border)

Don’t blink
We’re about to watch a young-gen
mark

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visualization of Concurrent Old- and Young-Gen GC

29

Note that marking made some
regions darker (the most recent
tlab areas), and made other regions
lighter (less recent tlab areas)

Keep your eye on the regions that
are slightly darker; they will be
preserved while others are
evacuated

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visualization of Concurrent Old- and Young-Gen GC

30

We’ve captured a snapshot of
evacuated regions being reclaimed
(mostly above)

Note the circled regions below –
these represent old gen

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visualization of Concurrent Old- and Young-Gen GC

31

Now we see many more promoted
regions

And some of the promoted regions
have a different age than other
promoted regions

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visualization of Concurrent Old- and Young-Gen GC

32

We let it run longer this time
We’ve now completed several old-
gen cycles and many more young-
gen cycles

Note that old-gen passes occur
much less frequently than young-
gen passes

Note that old-gen GC is frequently
preempted by young-gen GC

Note that many of the regions that
had previously been identified as
old-gen regions are now young-
gen regions (they’ve been
collected and recycled)

Note the small purple bars
associated with young-gen
evacuation passes (green lines)
that follow each old-gen collection

This represents concurrent
evacuation (aka mixed collections)
of young-gen and old-gen

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visualization of Concurrent Old- and Young-Gen GC

33

And more of the same

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Milestones for Early Access Release

34

• Milestone 9: Performance optimizations
• Concurrent remembered set scanning
• More efficient coalesce and fill of dead objects in old-gen
• Old-gen allocation from PLABs
• Perform maintenance upon retiring old-gen PLABs

• Milestone 10: Functional Improvements
• Reconstitute Full GC
• May add support for incremental-update mode of operation

• Milestone 11: Improved Metrics
• Average and burst allocation and promotion rates
• Ages at which objects become garbage within young-gen and old-gen regions
• Distribution by age of live objects within young-gen and old-gen regions
• Total live memory usage
• Fragmentation within young-gen and old-gen memory regions
• Performance counters: objects and bytes copied by mutators, frequency of copy collisions, objects and bytes

abandoned following copy collisions

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Further Enhancements Anticipated for Generally Available Release

35

• Existing Shenandoah Heuristics Need to be Enhanced:
• Numbers of processor cores dedicated to concurrent GC
• Sizes of young-gen and old-gen memory regions
• Triggering frequencies for young-gen and old-gen collections
• Frequency at which object ages are incremented
• Age at which to promote young-gen objects
• Bounds on young-gen and old-gen memory collected by each evacuation pass
• Memory utilization thresholds at which old-gen regions become candidates for evacuation
• Memory utilization thresholds at which young-gen regions become candidates for evacuation
• Bias old-gen collection set selection towards regions that are more fragmented or have not

been “recently” collected
• Triggering frequencies for class unloading, reference processing, string deduplication, and

heuristic refinement background tasks

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Possible Far-Future Improvements after Generally Available Release

36

• Adaptive degenerated GC modes: subset of all mutator threads take on GC activities
(rather than all mutator threads)

• Augment compacting old-gen GC with compact-in-place by repurposing dead areas
within heap regions not evacuated

• Use virtual memory mapping of heap regions to reduce fragmentation of humongous
allocations

• Pack allocations into remnant memory within humongous regions
• Replace direct card marking with thread-local buffer of reference-writes for remembered

set maintenance
• Combine update-references of GC pass N with concurrent mark of GC pass N+1
• Enhance old-gen remembered set to reduce update-refs effort following old-gen

evacuation
• Explore use of from-space invariant instead of to-space invariant
• Optimize for NUMA deployments

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Summary

37

• Generational Shenandoah sustains higher allocation rates and higher memory
utilization than non-generational Shenandoah

• An EA release offers these benefits when configured by manual methods
• A subsequent GA release reduces manual tuning efforts by providing heuristics

to auto-tune configuration and adapt to evolving workloads
• Further contemplated improvements expect to offer improvements in throughput

and latency in subsequent production releases of Generational Shenandoah

• Thank you to my colleagues on the Corretto JVM team who join with me in
implementing these capabilities and have contributed to this presentation

