Amber Race
Senior SDET
Big Fish Games

@ambertests

THE JOY OF TESTING IN
PRODUCTION




ONCE UPON A TIME
THERE WAS A
SERVICE...




™ @ambertests

WHO? WHAT? WHY!

Didn’t have detailed API use profiles

Didn’t know how often API calls were
failing

Didn’t know range of response times

Sometimes requests would get backed
up and we didn’t know why




THE MISSING PIECE

What we had What we didn’t have
* Unit and integration tests * A view of what was really
* Continuous build and deployment happening in production

* Multiple test environments

* Extensive manual testing of games

@ambertests



BUT ISN’T TESTING IN
PRODUCTION BAD??

@ambertests

| DON'T ALWAYS TEST MY
CODE

(&

1."*""-.2&{
‘: (\. ‘? «

W

BUT WHEN1DO'I
. DOITIN ' =
> %




YOU ARE ALREADY

TESTING IN PRODUCTION

@ambertests




F :IlJﬁTﬂﬁEm

TO AVOID “TESTING IN PRODUCTION”,YOU HAVE
TO FIND ALL THE BUGS BEFORE YOU RELEASE




THERE WILL ALWAYS BE ONE THAT GETS
AWAY ...




PROBLEMS WITH THE
SANDBOX

* Difficult to cover all client combinations
* Browsers
* Devices
* Networks
* Does your test environment match production?
* Memory
- CPU
* DB config
* Does your test user base match production?

-> No, it does not

@ambertests




Basic Functional Testing

* Happy paths tested
* Basic regression passes

* Boundary cases covered

@ambertests



Thorough Test Coverage

SR N

Full suite of unit tests

Continuous build with
automated tests

Performance and load
testing

Security test pass

Exploratory sessions

@ambertests



@ambertests



@ambertests

HOW PRODUCTION
MONITORING HELPS YOUR

TESTING

Monitor
areas of
interest

Add more
monitoring
based on
new

knowledge

Increase
your
knowledge
of the
software

Observe
patterns
and anti-
patterns

Test
around
observati
ons




COMMON MONITORING TOOLS

LOG-BASED DB-BASED DISPLAY
* ELK Stack * Graphite * Grafana

(Elasticsearch + e StatsD . Kibana

Logstash +

Kibana) * InfluxDB

* Splunk

@ambertests



Guild APIs

max avgv current
70 52 58
47 32 34
55 30 33
41 29 30
26 16 16
18 11 12
14 8 8

©
c
o
o
Q
w
-
Q
o
1]
=
Q
=)
o
[
-

i

10/200:00 10/204:00 10/208:00 10/212:00 10/216:00 10/220:00 10/300:00 10/304:.00 10/308:00 10/312:00 10/316:00 10/3 20:00

Graph General Metrics Axes Legend Display Alert Time range

A apps S$ENV GEEEED * @D * meter count  nonNegativeDerivative()  scaleToSeconds(1)  groupByNode(5,sum)  maximumAbove(0) +

Graphite + Grafana

@ambertests



WHY DID THIS

WORK FOR US?

Stack supported by Ops

Instrumenting the code was easier than fixing
the logs

Graphite query language gives a lot of
flexibility

Grafana templating is very useful

Pretty graphs are nice to look at

(@ambertests



public static void recordServiceMetrics(
String metricName, boolean success, long responseTime, String exception) {

String requestCounterName =
String. format("Services.%s.%s.RequestCount"”, ServerMain.HostName, metricName);
String failCounterName =
String. format("Services.%s.%s.FailReplies", ServerMain.HostName, metricName);
String responseTimerName =
String. format("Services.%s.%s.ResponseTime", ServerMain.HostName, metricName);
String exceptionCounterName =
String. format("Services.%s.%s.Exceptions.%s", ServerMain.HostName, metricName, exception);

registerMetrics(
requestCounterName,
failCounterName,
responseTimerName,
exceptionCounterName,
success,
responseTime,
exception);

INSTRUMENTING THE CODE




@GET

@UnitOfWork

@Path("/{playerId}")

@Timed (name="player.getPlayer.timer", absolute=true)

@letered(name="player.getPlayer.meter"”, absolute=true)

@ExceptionMetered(name="player.getPlayer.errors", absolute=true)

public Player getPlayer(@PathParam("playerId") LongParam playerId) {
return findSafely(playerId.get());

¥

as)

INSTRUMENTING THE CODE




Tree Search Auto-Completer
= ) Metrics
# [_Jcarbon
4 [__]servers
=) simple = @ @ A [  Now showing the past 12 hours
=J)example
#(_Jch
4[] getPlayer
4 _Jio
H(_Jjvm
H[_Jorg
= player
4 [_JendLevel
=) ) getAllPlayerData
=) meter ‘
=] count
=] m15_rate
=]m1_rate
=] m5_rate
=] mean_rate
4 ) timer
4 ] getFriends sim S ata.meter.ml_rate
# [_)getPlayer
4 |_]getPlayerData

Graphite Composer =]

| Graph Options ¥ | | Graph Data | | Auto-Refresh |

STORAGE IN GRAPHITE




All Player Requests

AR 21:55 22:00 22:05 22:10 22:15

endLevel == getAllPlayerData == getFriends getPlayer getPlayerData startLevel startSession updatePlayerData

VIEW IN GRAFANA




SAMPLE WALKTHROUGH



* Specific APIs

* Request Count
* Failures

* Response time

* Memcache Usage

WHAT DO WE * Thread Counts per Machine
TRACK!? * Exceptions Thrown

* Third Party Service Response Time

* System Stats (CPU/Memory/Ports)

* Database Stats (Reads, Writes, Slow
Queries

@ambertests



WHAT WE FOUND

@ambertests




* Certain API calls failed every time
POOR API because the client was making an

SAY-X€]= invalid call

* Save APIs called too frequently

@ambertests




* One APl was attempting to save a null
value, causing lots of unnecessary traffic

@ambertests




* In one game, 90% of API calls were to
save data because it was saving too

DATABASE frequently

OVERUSE * Another very common call was hitting
database when 95% of time nothing

was there

@ambertests




* By monitoring third party calls and
breaking down individual API response,
we were able to correlate stoppage
issues with third party network issues

@ambertests




THREAD * Tracking worker thread creation in the
CONFIG service exposed issues with thread
ISSUES pools that were too small

@ambertests




DASHBOARD MAINTENANCE



Store complete data, not just
aggregates

Ability to drill down to specific events

MONITORING -

OBSERVABILITY Tying together disparate info spread

across multiple dashboards

Follow Charity Majors (@mipsytipsy)
of honeycomb.io for more

@ambertests



= ra 3 _ 1
Total byte seconds = ra o Responses sent = La
5 min interval (mean) 5 min interval (rate)
150T 300/s
b 250/s
200/s
75T 150/s
100/s
50/s
1 — 0 0
Thu 08 12 PM
. — rA"
Response sizes [SUM] = L.
sum 5 min interval (delta) 5 min interval (rate)
9.766KB 12/s
4.883KB
10/s
1000B
500B 8/s
100B ‘ 6/s
50B Il MW*—O A
A NG TR0 YL g‘"»‘w ‘ ’. ? '
1OB 'l""‘ii.’ Ay A AN s VG it | A ﬂ"‘ 4/5
! ¢ o NN P NI""“ M Z
5B -w\..»""’:t” e R e L BRI ol
) ,1 v e’ AL IS e AN Py 9
- : | (L — —

Thu 78 6 AM 12 PM Thu 08 6 AM 12 PM



WITH ALL THE
DATA,YOU CAN

AGGREGATE...

o,
D..
I

&
R

B 8

{3} BREAKDOWN fx CALCULATE PER VY FILTER = ORDER

client.userAgent.os

GHUES None; include all rows COUNT_DISTINCT(client.
COUNT_DISTINCT(client.t desc

Oct 9 2018, 2:46 PM — Oct 9 2018, 3:22 PM

Results Raw Data

COUNT_LC

551
50 -1
45
40
35
30
25
20+
15
10

5

D

ISTINCT(client.userAgent.userAgentString)

I+ LIMIT
100

0

02:50 02:55 03PM 03:05 03:10

client.userAgent.os COUNT_DISTINCT(client.userAgent.userAgentString)

03:15

03;

B o 133

. unknown 42

. android 9



..,AND THEN
ZOOM IN

Results  Raw Data

DOWNLOAD

@ CSV | JSON
=

max rows returned: 1,000

FIELDS

ALL (16) | Current (4)
Timestamp
allowed
bytes
client.remoteAddress
client.userAgent.os
client.userAgent.user.
client.userAgent.versi
clientsUpdated
millis
name
path
1-30s
10-1000ms
30-60s
over_60s
under_10ms

89.2/ IE——
89.2/  E——
89.24 Ay
89.24 . nEm——
89.24 . A——
89.24 . N

Oct 92018, 2:46 PM — Oct 9 2018, 3:22 PM

5% Graph Settings

Timestamp [ millis name path

2018-10-09 15:16:49.788  © listener-listen ["prod”, "users”, "21854591", "meta"]
2018-10-09 15:16:49.788 1 listener-listen ["prod”, "users”, "23769125", "meta"]
2018-10-09 15:16:49.769  © listener-listen ["prod”, "users”, "19155547", "meta"]
2018-10-09 15:16:49.766  © listener-listen ["prod”, "users”, "26228346", "online"]
2018-10-09 15:16:49.766 1 listener-listen ["prod”, "threads", "guild_29557", "messages” ]
2018-10-09 15:16:49.766  © listener-listen ["prod”, "users”,"19796788", "online"]
2018-10-09 15:16:49.766  © listener-listen ["prod", "users”, "12856737", "online"]
2018-10-09 15:16:49.766  © listener-listen ["prod”, "users”,"7806925", "online" ]
2018-10-09 15:16:49.766  © listener-listen ["prod”, "threads", "guild_29557", "meta”]
2018-10-09 15:16:49.765  © listener-listen ["prod", "users”,"21219641", "meta"]
2018-10-09 15:16:49.765  © listener-listen ["prod", "threads", "guild_83282", "lastMessage"]
2018-10-09 15:16:49.763  © listener-listen ["prod", "users","11984397", "meta"]
2018-10-09 15:16:49.763  © listener-listen ["prod", "users", "17354350", "online"]
2018-10-09 15:16:49.763 2 listener-listen ["prod", "users", "21085692", "online"]
2018-10-09 15:16:49.763  © listener-listen ["prod", "users", "23805956", "online"]

["prod”,
["prod",
["prod”,
["prod",
["prod”,

["prod",

"users", "20228346", "online"]
"threads", "guild_29557", "messages"]
"users", "19796788", "online" ]
"users", "12856737", "online"]
"users", "7806925", "online"]

"threads", "guild_29557", "meta"]



HONEYCOMB WALKTHROUGH



SO WHY BOTHER WITH TRADITIONAL

MONITORING?

Monitoring tools are easily
available, open source

Dashboards are still useful as a
high-level view

Monitoring tools can still inform
further testing

Some information is better than
no information

@ambertests

MONITORING
IS DEAD

@grepory, 2016

This is a outdated model for complex systems. ‘

Slide credit: Charity Majors
(@mipsytipsy)



BUT THAT’S ALL JUST
DEBUGGING.WHAT
ABOUT TESTING???



PERFORMANCE

TESTING

* New APIs can be on production
servers before clients are
updated

* No need to translate results
between environments

* Test will automatically include
real background load




FEATURE TESTING

* Flag new features at the config
level to toggle on and off

* Update configuration on select
boxes

* Woatch what happens




CHAOS TESTING

@ambertests




MONITORING,
OBSERVING,
AND TESTING

GO TOGETHER

Martin (57) Hynie

' @vds4

An attempt to paraphrase a useful
analogy from , but in tester
speak... consider monitoring like your
automated checks (known unknowns)
while observability is building and
enabling exploratory testing in prod
(unknown unknowns).

7:24 AM - 8 Nov 2018



"Tester's don't
break products, just
illusions people have

about them."—
Maaret Pyhajarvi

(@maaretp)

EXPLORING IS
PART OF
TESTING

@ambertests



EXPLORE
WITHOUT




MORE INFORMATION

ELK Stack: https://www.elastic.co/elk-stack

Graphite + StatsD Docker image: https://hub.docker.com/r/hopsoft/graphite-statsd/

Graphite Docs: https://graphite.readthedocs.io/en/latest/

StatsD: https://github.com/etsy/statsd

Grafana: https://grafana.com/

Honeycomb: https://www.honeycomb.io/



https://www.elastic.co/elk-stack
https://hub.docker.com/r/hopsoft/graphite-statsd/
https://graphite.readthedocs.io/en/latest/
https://github.com/etsy/statsd
https://grafana.com/
https://www.honeycomb.io/

CONTACT ME!

Amber Race

Twitter: @ambertests
LinkedIn:

GitHub:



https://www.linkedin.com/in/amber-race-tests/
https://github.com/ambertests

