
THE JOY OF TESTING IN 
PRODUCTION

Amber Race

Senior SDET

Big Fish Games

@ambertests



ONCE UPON A TIME 
THERE WAS A 

SERVICE…

• In production since 2014

• Weird interface

• Built to support multiple 
games

• Rich set of APIs

• Currently serving 800k 
DAU, 4000 requests per 
second



WHO? WHAT? WHY?

• Didn’t have detailed API use profiles

• Didn’t know how often API calls were 
failing

• Didn’t know range of response times

• Sometimes requests would get backed 
up and we didn’t know why

@ambertests



THE MISSING PIECE

What we had
• Unit and integration tests

• Continuous build and deployment

• Multiple test environments

• Extensive manual testing of games

What we didn’t have
• A view of what was really 

happening in production



BUT ISN’T TESTING IN 
PRODUCTION BAD??



YOU ARE ALREADY 
TESTING IN PRODUCTION



TO AVOID “TESTING IN PRODUCTION”, YOU HAVE 
TO FIND ALL THE BUGS BEFORE YOU RELEASE



THERE WILL ALWAYS BE ONE THAT GETS 
AWAY…



PROBLEMS WITH THE 
SANDBOX

• Difficult to cover all client combinations
• Browsers
• Devices
• Networks

• Does your test environment match production?
• Memory
• CPU
• DB config

• Does your test user base match production? 
-> No, it does not



Basic Functional Testing

• Happy paths tested

• Basic regression passes

• Boundary cases covered



Thorough Test Coverage

• Full suite of unit tests

• Continuous build with 
automated tests

• Performance and load 
testing

• Security test pass

• Exploratory sessions



The Real World



HOW PRODUCTION 
MONITORING HELPS YOUR 

TESTING

Monitor 
areas of 
interest

Observe 
patterns 
and anti-
patterns

Test 
around 

observati
ons

Increase 
your 

knowledge 
of the 

software

Add more 
monitoring 
based on 

new 
knowledge



LOG-BASED

• ELK Stack 
(Elasticsearch + 
Logstash + 
Kibana)

• Splunk

• Grafana

• Kibana

DISPLAY

COMMON MONITORING TOOLS

DB-BASED

• Graphite

• StatsD

• InfluxDB



Graphite + Grafana 

@ambertests



WHY DID THIS 
WORK FOR US?

Stack supported by Ops

Instrumenting the code was easier than fixing 
the logs

Graphite query language gives a lot of 
flexibility

Grafana templating is very useful

Pretty graphs are nice to look at



INSTRUMENTING THE CODE



INSTRUMENTING THE CODE



STORAGE IN GRAPHITE



VIEW IN GRAFANA



SAMPLE WALKTHROUGH



WHAT DO WE 
TRACK?

• Specific APIs
• Request Count

• Failures

• Response time

• Memcache Usage

• Thread Counts per Machine

• Exceptions Thrown

• Third Party Service Response Time

• System Stats (CPU/Memory/Ports)

• Database Stats (Reads, Writes, Slow 
Queries



WHAT WE FOUND

@ambertests



POOR API 
USAGE

• Certain API calls failed every time 
because the client was making an 
invalid call

• Save APIs called too frequently



MEMCACHE
ISSUES

• OneAPI was attempting to save a null
value, causing lots of unnecessary traffic



DATABASE 
OVERUSE

• In one game, 90% of API calls were to 
save data because it was saving too 
frequently

• Another very common call was hitting 
database when 95% of time nothing 
was there



SLOW 
REQUESTS

• By monitoring third party calls and 
breaking down individual API response, 
we were able to correlate stoppage 
issues with third party network issues



THREAD 
CONFIG
ISSUES

• Tracking worker thread creation in the 
service exposed issues with thread 
pools that were too small



DASHBOARD MAINTENANCE

• Make sure you only have the things you care about

• Consolidate as much as possible

• Check that your solution isn’t adding too much overhead

• Re-evaluate your metrics



MONITORING à
OBSERVABILITY

Store complete data, not just 
aggregates

Ability to drill down to specific events

Tying together disparate info spread 
across multiple dashboards

Follow Charity Majors (@mipsytipsy) 
of honeycomb.io for more



TYPICAL METRICS DASHBOARD

@ambertests



WITH ALL THE 
DATA, YOU CAN 
AGGREGATE. . .



..AND THEN 
ZOOM IN



HONEYCOMB WALKTHROUGH



SO WHY BOTHER WITH TRADITIONAL 
MONITORING?

• Monitoring tools are easily 
available, open source

• Dashboards are still useful as a 
high-level view

• Monitoring tools can still inform 
further testing

• Some information is better than 
no information

Slide credit: Charity Majors 
(@mipsytipsy)



BUT THAT’S ALL JUST 
DEBUGGING. WHAT 
ABOUT TESTING???



PERFORMANCE 
TESTING

• New APIs can be on production 
servers before clients are 
updated

• No need to translate results 
between environments

• Test will automatically include 
real background load



FEATURE TESTING

• Flag new features at the config 
level to toggle on and off

• Update configuration on select 
boxes

• Watch what happens



CHAOS TESTING



MONITORING, 
OBSERVING, 

AND TESTING 
GO TOGETHER



EXPLORING IS 
PART OF 
TESTING

"Tester's don't
break products, just 
illusions people have 
about them."–
Maaret Pyhäjärvi
(@maaretp)



EXPLORE 
WITHOUT 

FEAR

@ambertests



MORE INFORMATION

• ELK Stack: https://www.elastic.co/elk-stack

• Graphite + StatsD Docker image: https://hub.docker.com/r/hopsoft/graphite-statsd/

• Graphite Docs: https://graphite.readthedocs.io/en/latest/

• StatsD: https://github.com/etsy/statsd

• Grafana: https://grafana.com/

• Honeycomb: https://www.honeycomb.io/

@ambertests

https://www.elastic.co/elk-stack
https://hub.docker.com/r/hopsoft/graphite-statsd/
https://graphite.readthedocs.io/en/latest/
https://github.com/etsy/statsd
https://grafana.com/
https://www.honeycomb.io/


CONTACT ME!

• Amber Race

• Twitter: @ambertests

• LinkedIn: 
https://www.linkedin.com/in/amber-race-
tests/

• GitHub: https://github.com/ambertests

https://www.linkedin.com/in/amber-race-tests/
https://github.com/ambertests

