
Observability beyond the three pillars

Continuous Profiling with Alibaba Dragonwell

Sanhong Li | Java Champion, JVM Architect | Alibaba Cloud

01

02

03

04

Basics of Observability
Content

Fundamentals of JFR

Continuous Profiling with Alibaba Dragonwell

Case Studies

05 Wrap up

Observability to Software Systems

• Understand the inner workings of your application

• Understand any system state your application may have gotten

• Understand the inner workings and system state solely by observing and

interrogating with external tools

• Understand the internal state without shipping any new custom code to handle it

•“observability” was originally coined in 1960, used to describe

mathematical control systems.

• Applied to modern software systems

Observability Engineering, Charity Majors, Liz Fong-Jones, George Miranda 2022

(Traditional) Three Observability Pillars

https://github.com/cncf/tag-observability/blob/main/whitepaper.md#observability-signals

Metrics

numeric representation of data measured over

intervals of time(e.g via Java MXBean API)

Traces

representation of a series of causally related

distributed events(e.g via JVMTi agent）

Logs

immutable, timestamped record of

discrete events that happened over time.

(e.g gc log is a typical example)

Continuous Profiling: 4th aspect of Observability

• Google pioneered the continuous profiling concept in its own data centers

• “Google-Wide Profiling: A Continuous Profiling Infrastructure for Data

Centers”, research paper published by Google in 2010

• Continuous profiling (constantly monitors an application's performance in

real time)

• Executing in a production environment(no need to develop accurate

predictive load tests or benchmarks for the production)

• Sampling(low overhead)

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/36575.pdf

Continuous Profiling: Conceptual Architecture

Applications

[Profiling Interface]

Collectors

Profiles Repository Profiles Database

(1) Data Collection (2) Data Storage

(3) Data Analysis

WebServer

HTTP API

• Selects a random sample of

applications for profiling

• Generate the

performance dashboard

• CPU

• Memory

• ……

• Analyze the collected

profiles, index, aggregate and

store them into K/V database

for query

01

02

03

04

Basics of Observability
Content

Fundamentals of JFR

Continuous Profiling with Alibaba Dragonwell

Case Studies

05 Wrap up

2008 2012 2020

2010 2018

Oracle acquired Sun

JRockit Flight Recorder was rebranded

Java Flight Recorder, released in JDK7

(as proprietary commercial offering)

Alibaba is working with the community

(Red Hat, Azul and Datadog) to

contribute back to OpenJDK8u

Open sourceed in

OpenJDK 11 by Oracle

Oracle acquired BEA

Java Flight Recorder(JFR) History

JRockit Flight Recorder

BEA Systems

JFR Workflow Overview

JFR

JIT

GC JFR

Events
JFR dump

（*.jfr)Runtime

profile.jfc

1. Command line via VM

arguments

• -XX:+FlightRecorder

• -XX:StartFlightRecording

2. JCMD comand

• JFR.start

• JFR.stop

3. Java API

1. Java Mission Control

2. JFR tool shipped by

JDK by default

• jfr summary

• jfr print

3. Java API

(since JDK9）

Instant

Event

Duration

Event

Sample

Events

JFR Events

• have a start and end

• occur immediately

• logged at a regular interval

Timed

Event

• Like Duration Event, but with
threshold set

Examples from $JAVA_HOME/lib/jfr/default.jfc

01

02

03

04

Basics of Observability
Content

Fundamentals of JFR

Continuous Profiling with Alibaba Dragonwell

Case Studies

05 Wrap up

ARMS Continuous Profiler - Introduction

Alibaba Dragonwell

Application Realtime Monitoring Service(ARMS)

Continuous Profiler(JFR/Async Profiler based)

❑ Alibaba Dragonwell – downstream of OpenJDK,

free LTS by Alibaba Cloud

❑ ARMS - Application Real-Time Monitoring Service

(ARMS) is an application performance

management (APM) service, written in Java,

running on top of Alibaba Dragonwell

❑ Continuous Profiler, based on JFR and async-

profiler technology, part of ARMS

✓ Collecting profiling data via Java agent

✓ Major features

✓ CPU/Allocation/Wall clock profiling

✓ Integration with Tracing

CPU Allocation
Wall

clock

Tracing

Integration

Span

Java Agent

https://www.alibabacloud.com/product/arms

https://www.alibabacloud.com/product/arms

ARMS Continuous Profiler – Overview

C P U

W a l l C l o c k

F i l e I O

S o c k e t I O

D i r e c t M e m o r y

E x c e p t i o n

A l l o c a t i o n

L o c k

T h r e a d A c t i v i t y

Application Request Latency

JFR Overhead Assessment

• OS: Linux version 3.10.0-1160.80.1.el7.x86_64

• CPU: vCore 24, x86_64, Intel(R) Xeon(R) Platinum 8369B CPU @ 2.70GHz

• Memory: 24G

• JDK: OpenJDK 1.8.0_362 64-Bit Server VM (build 25.362-b08, mixed mode)

• Flags: -XX:+UseConcMarkSweepGC -Xmx10g -Xmn5g -XX:MaxMetaspaceSize=512m -Xloggc:gc.log -XX:+PrintGCDetails

-XX:+PrintGCDateStamps

17.9%

22.7%

2.1%

5.2%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

jfr-default jfr-profile jfr-default-membar jfr-profile-membar

SPECjbb 2015 - max-jOPS

JFR Overhead Assessment

17.9%

22.7%

2.1%

5.2%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

jfr-default jfr-profile jfr-default-membar jfr-profile-membar

SPECjbb 2015 - max-jOPS

use -XX:+UseMembar to minimize the

overhead greatly

• The cost was introduced by the call to os::serialize_thread_states (which uses mprotect to force a pseudo-

memory barrier) by JfrThreadSampler thread. Notes: this sync mechanism has the performance issue in

scalability!

• -XX:+UseMembar uses a direct memory fence operation, which is more cheap to get the state of java thread

• More detail info:

• https://bugs.openjdk.org/browse/JDK-8187812

• https://bugs.openjdk.org/browse/JDK-8276309

https://bugs.openjdk.org/browse/JDK-8187812
https://bugs.openjdk.org/browse/JDK-8276309

Tracing

• Tracing is usually recorded by bytecode rewriting.

• Need to be implemented in various types of

frameworks used by applications.

• If a certain framework is not covered, the tracing

information will be missed, resulting in monitoring

blind spots.

Contextualized JFR – Corelating with Tracing

UserService

ItemService

SellerService

OrderService

Database

Cache

MsgQueue

?

100 ms

50ms

100 ms

• The challenge is: even if we have collected JFR events at those blind spots, we

don’t know the their relationship - JFR currently lacks the ability to associate

context to JFR events.

Contextualized JFR – Corelating with Tracing(2)

Request 1 Request 2

Sample 1

a()

b()

Sample 2

a()

c()

Sample 3

a()

b()b()

span-1001

Sample 1

a()

c()

Sample 1

a()

b()

Sample 3

a()

Sample 4

a()

b()

Sample 5

a()

b()b()

span-1003

Tracer

Profiler

Java Thread

span-1001 span-1001 span-1003 span-1003 span-1003 span-1003

Idle

OrderService

Database

Cache

MsgQueue

?

span-1003

Trace is composed of one
or more spans. Span in the
trace represents
one microservice in the
execution path.

Contextualized JFR – Corelating with Tracing(3)

Thread 1

Thread 2

Thread 3

Thread 4

Thread N

…

traceId spanId 0 1 2 10 11…

16 bytes 48 bytes

Thread context data

64 bytes
Thread Context Storage

Java API

public void setContext(long traceId, long spanId)

public void clearContext()

public boolean setContextValue(String attribute, String value)

public boolean clearContextValue(String attribute)

JFR Event

(jdk.ExecutionSample)

startTime

eventThread

…

traceId

spanId

custom attribute 1

…

custom attribute N

More reference implementation info:

• https://github.com/async-profiler/async-profiler

• https://github.com/DataDog/java-profiler

• An context implementation example(based on ideas of aync-profiler & Datadog implementation)

https://github.com/async-profiler/async-profiler
https://github.com/DataDog/java-profiler

Lessons Learned

It is highly recommended to add the -XX:+UseMembar flag to avoid this problem.

It has been turned on by default since JDK 10: https://bugs.openjdk.org/browse/JDK-8187812

#1 For JDK 8, if the number of Java threads is large (for example, more than 500), CPU overhead may be

expensive and is positively related to the number of threads.

https://bugs.openjdk.org/browse/JDK-8187812

Lessons Learned(2)

#2 For JDK 8 and JDK 11, the amount of events for memory allocation may be large. It is not recommended to

enable them for applications with fast memory allocation.

• https://bugs.openjdk.org/browse/JDK-8257602

#3 Before JDK 11.0.7, the OldObjectSample event may create unexpected amount of checkpoint data, cause

the JFR file to be very large, and it is not recommended to enable it.

• https://bugs.openjdk.org/browse/JDK-8225797

#4 Before JDK 11.0.12, the OldObjectSample event is expensive, not suitable for production.

• https://bugs.openjdk.org/browse/JDK-8225797

https://bugs.openjdk.org/browse/JDK-8257602
https://bugs.openjdk.org/browse/JDK-8225797
https://bugs.openjdk.org/browse/JDK-8225797

01

02

03

04

Basics of Observability
Content

Fundamentals of JFR

Continuous Profiling with Alibaba Dragonwell

Case Studies

05 Wrap up

Case Study - Object Allocation

time

cpu%

ygc count

/10 min

GC Spikes

Metrics captured from real workloads

Case Study - Object Allocation

GC log cannot tell you what allocated the most objects

Case Study - Object Allocation

• Support TLAB allocation statistics by

• EventObjectAllocationOutsideTLAB

• EventObjectAllocationInNewTLAB

• Used to find out where the allocation pressure is

eden

TLAB1 TLAB2 TLAB3

T1 T2 T3

Object Allocation JFR Demo

1. Run server: make object allocations on request arrival.

2. Use jcmd to enable object allocation event tracking.

3. Launch client: send requests to sever.

4. Use jmcx to generate folded stacks from JFR dump file.

5. Use flamegraph.pl to generate flame graph for object allocation.

Case Study II - Deoptimization

• Mix mode execution

• Profile Guided Optimization

• Optimization decision are made dynamically

• Bail to interpreter if the assumption is wrong

interpreter

c1

c2
bail(deoptimization）

Basics concept of Just-in-Time compiler

Deoptimization is very expensive if speculation is wrong:

fall back to interpreter and wait for re-compilation

Case Study II - Deoptimization

2019 2019

• Unstable if case

A

B

trap to runtime system: uncommon branch is taken

Deoptimization JFR Demo

1. Run JMH benchmark: an example for Unstable-if deopt

✓Enable JFR setting via –jvmArgs(JMH parameter)

2. Use jmcx to generate folded stacks from JFR dump file.

3. Use flamegraph.pl to generate flame graph for object allocation.

01

02

03

04

Basics of Observability
Content

Fundamentals of JFR

Continuous Profiling with Alibaba Dragonwell

Case Studies

05 Wrap up

Round-up

1. The Definition of Observability and basics of Continuous Profiling(4th Pillar of Observability)

2. Basics of JFR(Observability tools for JVM applications)

✓ JFR Workflow(How to use it) and JFR Events(Understand what they are used for)

3. Alibaba Practice: ARMS Continuous Profiler

4. Two Case Studies : Object Allocations/Deoptimization

THANKS

