# Методы ускорения инференса нейронных сетей на примере видеоаналитики

Шалимов Александр, 2023

# Кто я и чем занимаюсь

- Инженер машинного обучения в Inventos
- Специализация компьютерное зрение
- Разработка и поддержка систем видеоаналитики
- Аспирант в ОГУ им. Тургенева
- Сфера научных интересов: обнаружение аномалий в CV





# План доклада

- 1. В каких задачах требуется оптимизация нейронных сетей
- 2. Наша задача: Обнаружение автомобилей в видеопотоке
- 3. Пример оптимизации нейронных сетей в видеоаналитике и её экономический эффект
- 4. Типовые проблемы видеоаналитики
- 5. Подход к решению задачи: Использование YOLO X
- 6. Классификация техник оптимизации
- 7. Выбор метрик для оптимизации
- 8. Оптимизация нашего решения: Как мы ускорили инференс детектора в 4 раза!

# В каких задачах требуется оптимизаций нейронных сетей?

Нейронные сети играют ключевую роль в многих задачах.

Тип оптимизации может быть разным:

- Розничная торговля: Оптимизация для анализа покупательского поведения на устройстве
- Обработка VOD контента: Максимизация пропускной способности для обработки большого объема видео
- Аналитика автомобильного трафика: Снижение задержки для моментальной обработки данных от камер
- Системы безопасности: Быстрое реагирование и высокая точность

В докладе поговорим об оптимизации инференса



# Источник данных с которыми мы работаем

- Камеры наблюдения за дорожным движением
- Видеопоток с высоким разрешением
- Различные ракурсы, погодные условия и условия освещенности





# Наши задачи: Аналитика автомобильного трафика

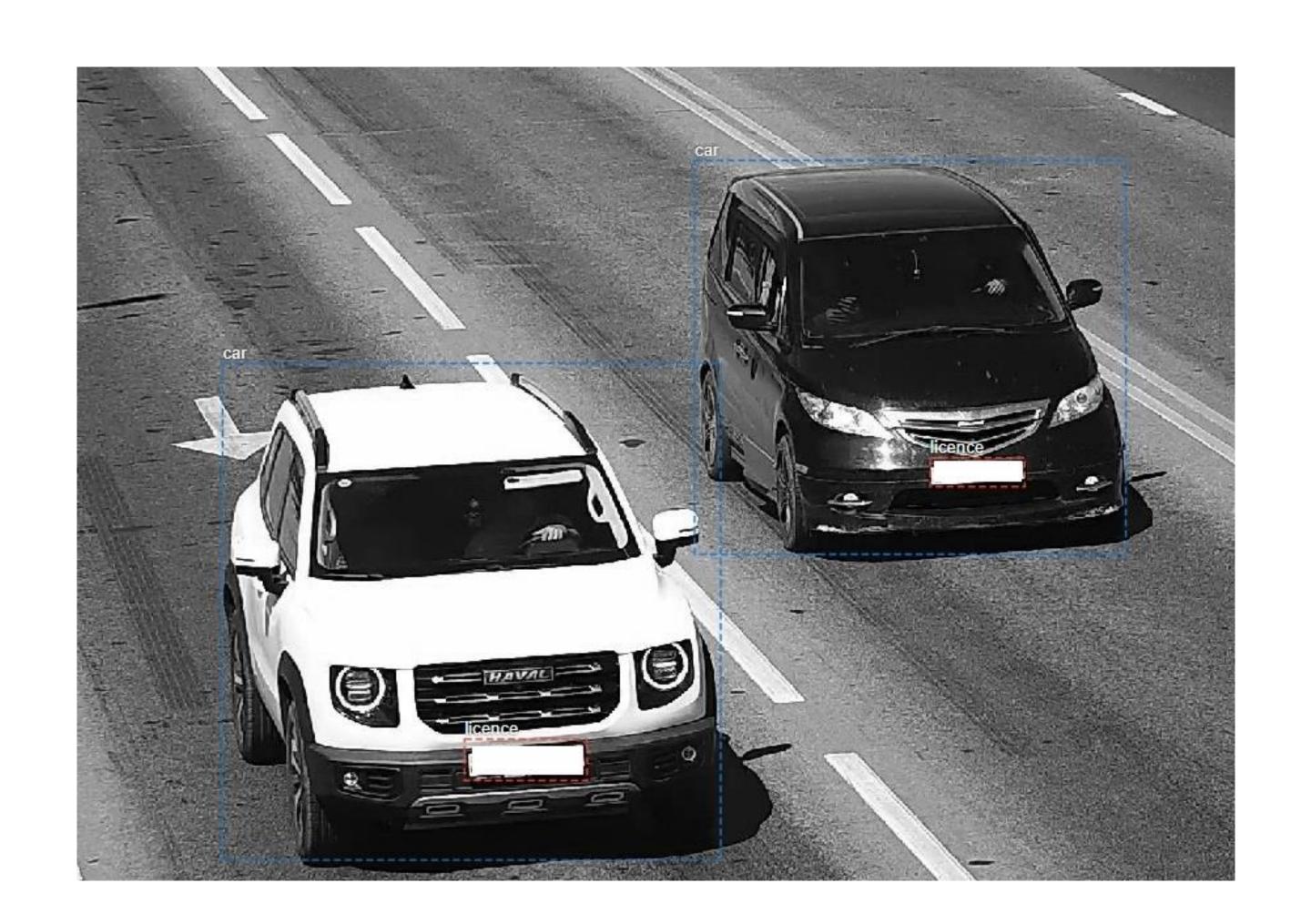
- Обнаружение ТС
- Сопровождение ТС
- Классификация ТС
- Распознавание ГРЗ

#### Особенности:

• Выполнение на устройстве (ограничены в ресурсах)

### **Цель** оптимизации:

- Требуется ловить нарушителей на большой скорости (не можем скипать кадры)
- Необходимо **снижать latency** время прогона нейронной сети



### Еще пример: нейронные сети для анализа видеоконтента

### Для чего используются нейронные сети:

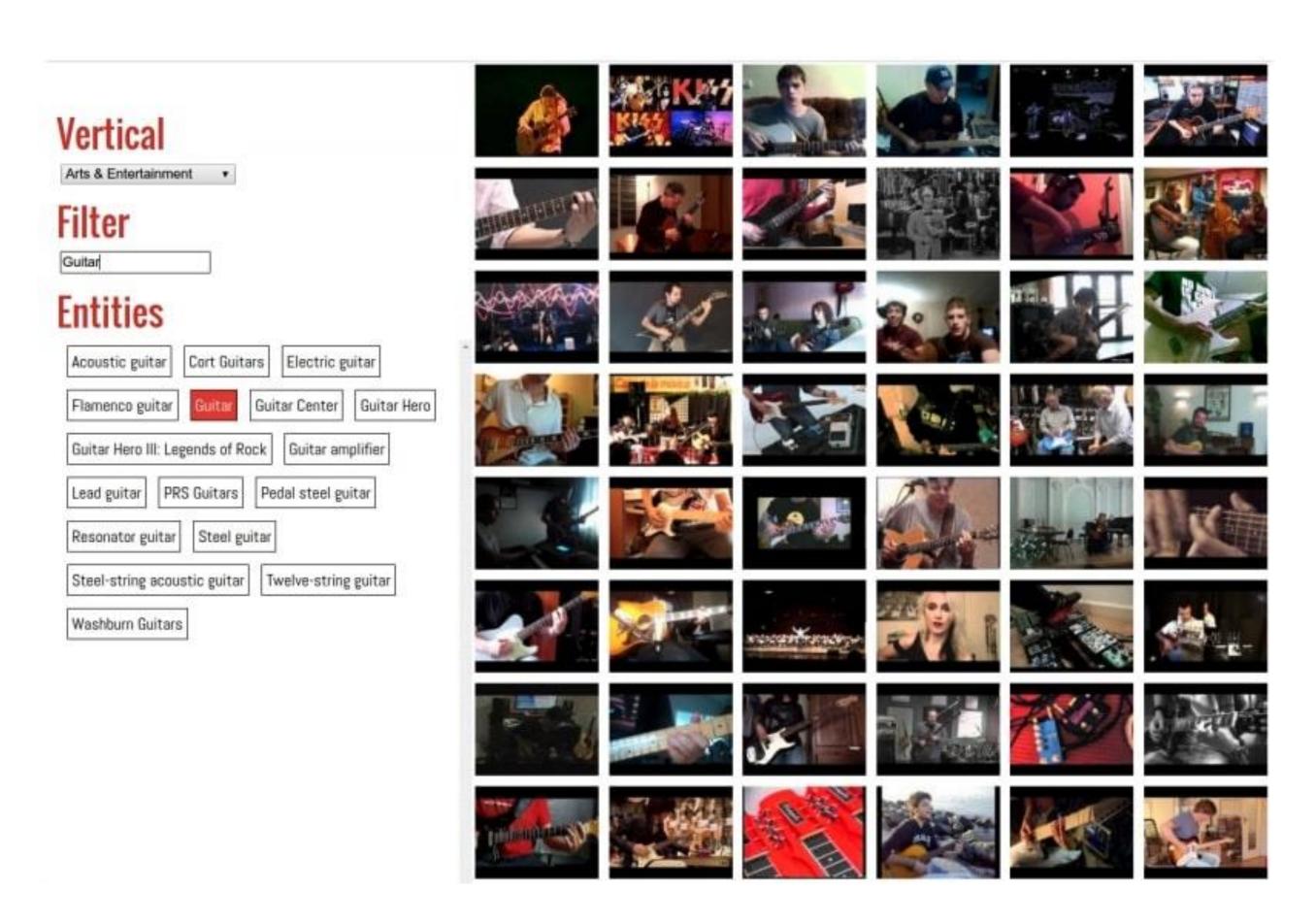
- Позволяют формировать точные тэги к видео.
- Помогают улучшить качество рекомендаций.

#### Особенности:

- Выполняется на сервере (много GPU)
- Оцифрованные данные

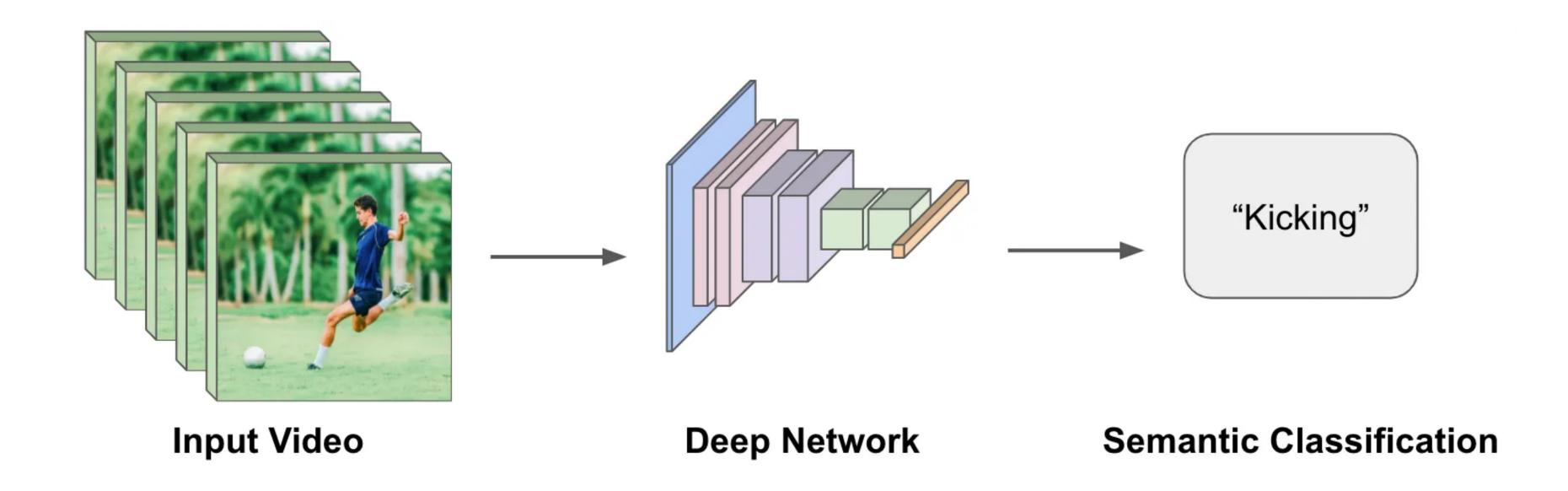
#### **Цель** оптимизации:

- Требуется обрабатывать большое количество роликов в сутки
- Необходимо увеличивать throughput
- Можно увеличивать и за счет ускорения инференса



Набор данных YouTube-8M

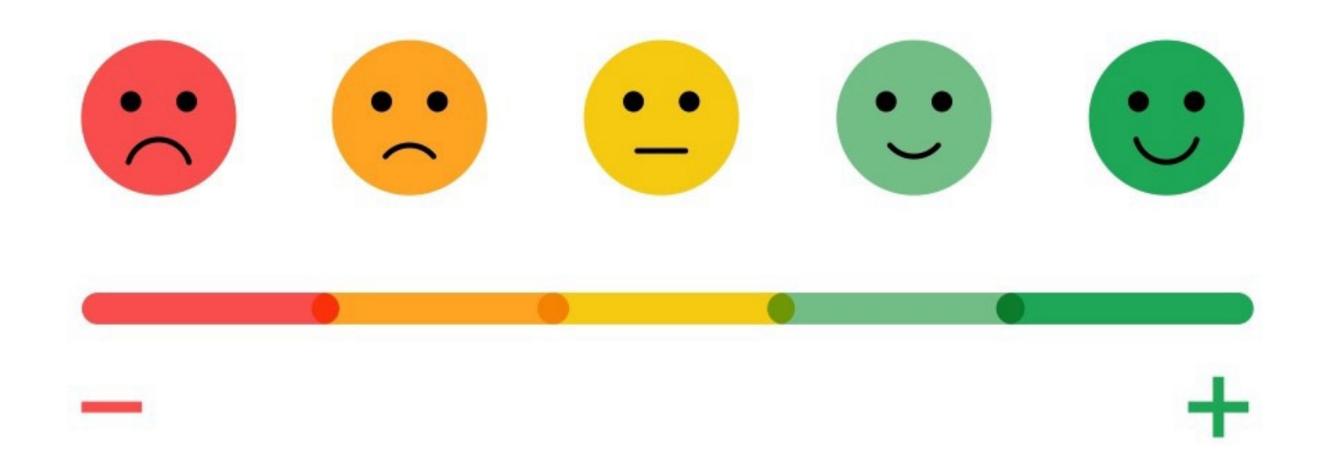
# Применение оптимизаций в анализе видеоконтента



Одна из простых оптимизаций в архитектуре сети - **batching** (пакетная обработка) Эффект оптимизаций:

- Увеличивает скорость обработки контента.
- Позволяют проводить аналитику в режиме работы, приближенному к реальному.
- Необходимое соблюдать баланс: Качество работы нейронной сети и скорость ее работы.

# Экономический эффект оптимизации в анализе видеоконтента



- Уменьшается время обработки данных и снижается нагрузка на серверы
- Благодаря незначительному снижению качества сети, пользователи своевременно получают персонализированные рекомендации, что повышает их вовлеченность и удовлетворенность
- Высокая степень удовлетворенности пользователей приводит к увеличению их активности и времени, проведенного на платформе

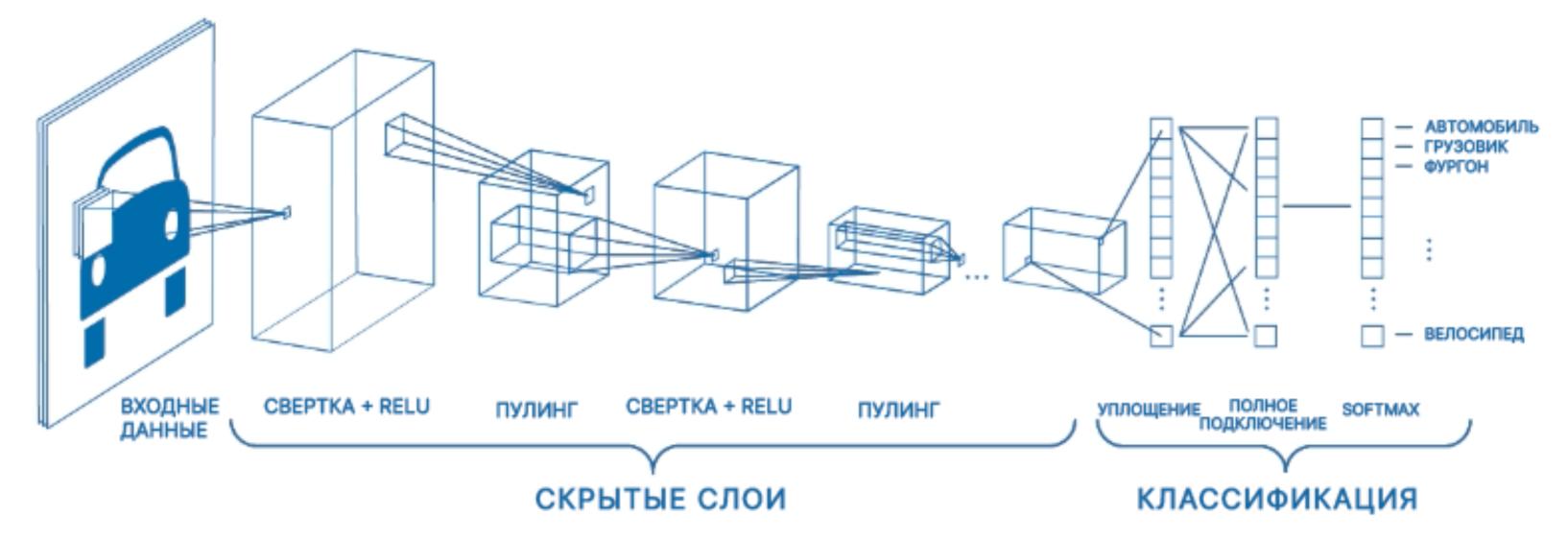
# Типовые проблемы в задачах видеоаналитики

- Работа с данными высокой размерности
- Обработка данных в режиме приближенному к реальному времени
- Различный размер объектов,
   перекрытия и изменяющиеся
   фоны
- Изменчивость качества видео



# Концепция решения: Свёрточные нейронные сети (CNN)

Рассмотрим оптимизации, которые мы использовали на примере обнаружения TC



Применение CNN для задачи классификации TC

### Преимущества:

- Автоматически учатся иерархическим представлениям признаков
- Эффективны для задач обработки изображений и видео
- Устоявшаяся технология,
   хорошо работают с
   встраиваемыми системами

### Недостатки:

Слабая способность
 моделировать глобальный контекст

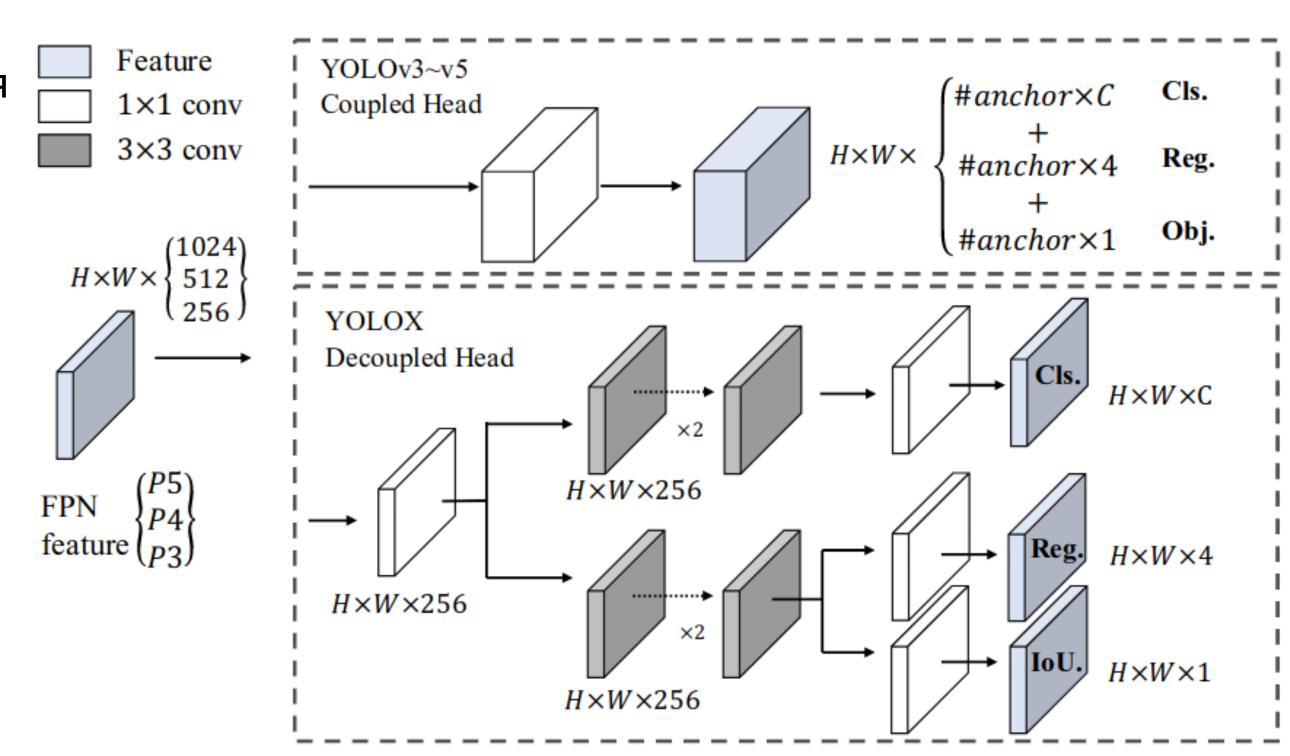
### YOLO X: Система обнаружения объектов в реальном времени

### Преимущества:

- Делает прогноз на основе всего изображения за одно выполнение сети (One-stage detector)
- Подход без якорей (Anchor-free) позволяет снизить число параметров
- Разделение голов под разные задачи: классификация, локализация, наличие объекта

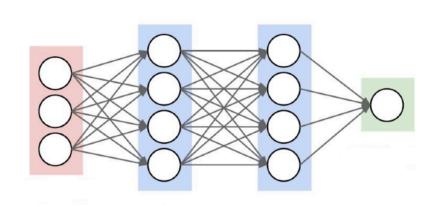
### Недостатки:

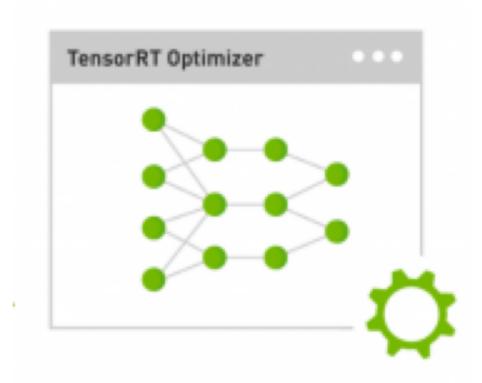
- Mish активация сильно замедляет выполнение
- Трудности с экспортом NMS внутри сети и необходимость реализации постпроцессинга



Разделение голов YOLO X в сравнении с объединенным подходом

# Классификация подходов к оптимизации скорости одного прогона сети







### Архитектура сети

Многозадачные архитектуры

Многомодальные архитектуры

Динамический размер пакета

Легковесные архитектуры (MobileNet)

### Выполнение сети

Квантизация сети

Оптимизация графа выполнения

Прунинг

Дистиляция

### Код

Контроль выделения видеопамяти

Препроцессинг и постпроцессинг на GPU

C++ TensorRT API

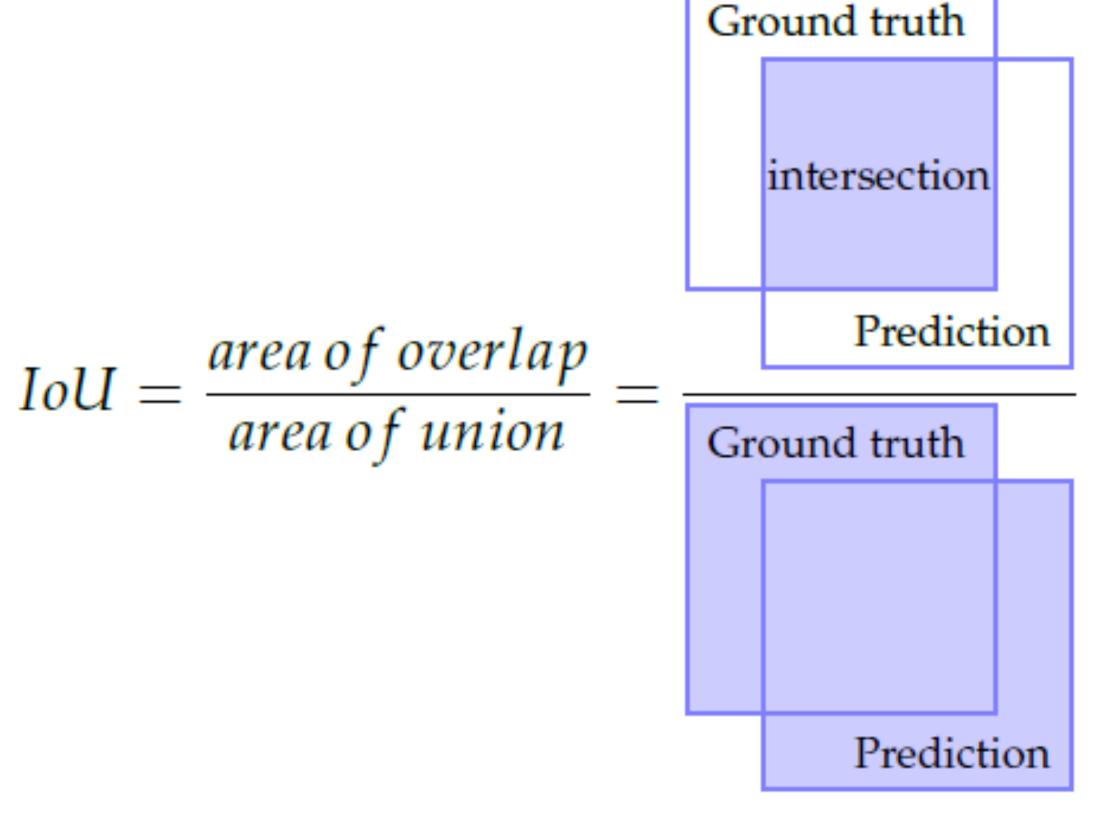
C++ TensorRT Plugins

Triton Inference Server

# Выбор метрик для оптимизации: IoU

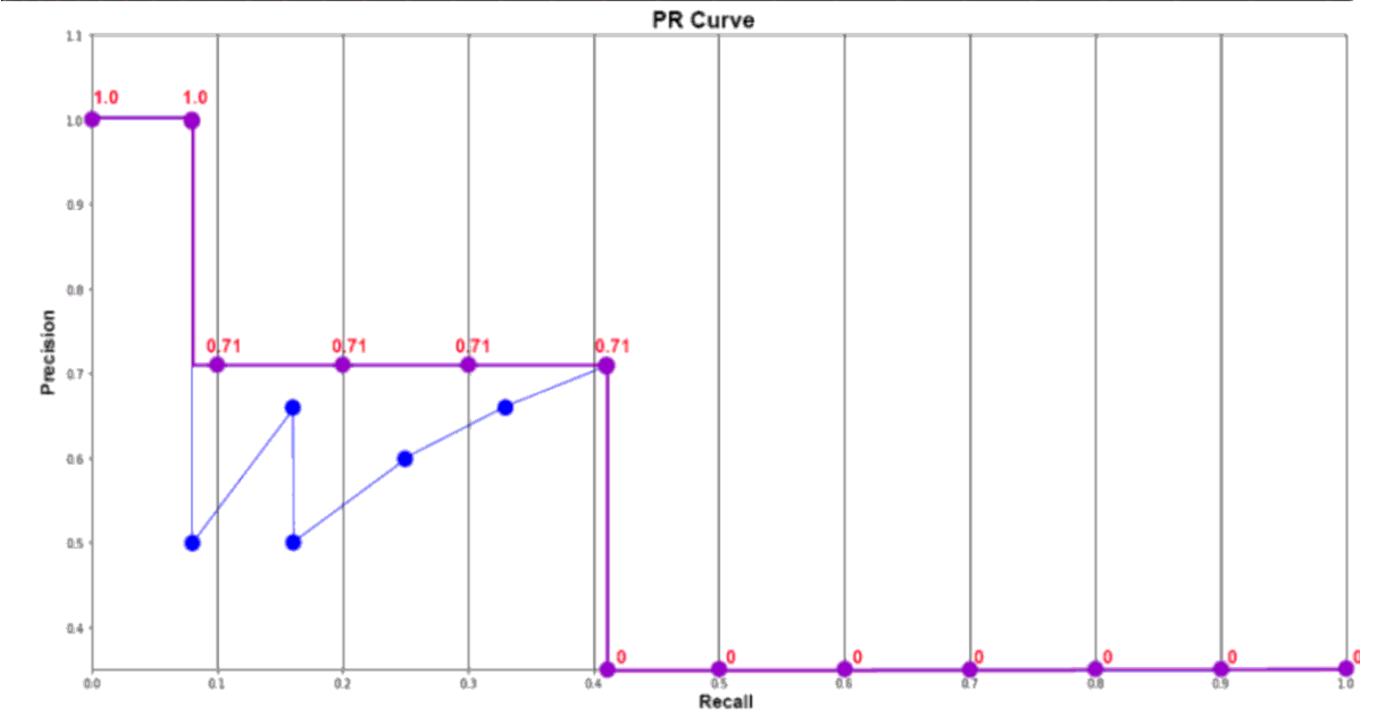
Для детектора YOLO X рассматривались:

- пересечение над объединением (IoU)
- точность (precision) для порога IoU
- полнота (recall) для порога loU



# Выбор метрик для оптимизации: АР

| Detections |      |      |      |      |      |      |      |
|------------|------|------|------|------|------|------|------|
| Precision  | 1    | 0.5  | 0.66 | 0.5  | 0.6  | 0.66 | 0.71 |
| Recall     | 0.08 | 0.08 | 0.16 | 0.16 | 0.25 | 0.33 | 0.41 |



Average Precision (AP) - площадь под precision-recall кривой

$$AP_{\text{dog}} = \frac{1}{13} \left( \sum_{i=1}^{13} P_i \right) = \frac{1}{13} (2 \cdot 1 + 4 \cdot 0.71 + 7 \cdot 0)$$
$$= \frac{1}{13} (2 + 2.84 + 0) = \frac{1}{13} \cdot 4.84 = 0.372 = 37.2 \%$$

# Выбор метрик для оптимизации: mAP

Объединяющая их метрика: усреднение AP по всем классам - mAP для различных loU.

| Method          | Backbone        | Size | FPS (V100) | AP (%) | <b>AP</b> <sub>50</sub> | <b>AP</b> <sub>75</sub> | $\mathbf{AP}_S$ | $\mathbf{AP}_{M}$ | $\mathbf{AP}_L$ |
|-----------------|-----------------|------|------------|--------|-------------------------|-------------------------|-----------------|-------------------|-----------------|
| YOLOX-DarkNet53 | Darknet-53      | 640  | 90.1       | 47.4   | 67.3                    | 52.1                    | 27.5            | 51.5              | 60.9            |
| YOLOX-M         | Modified CSP v5 | 640  | 81.3       | 46.4   | 65.4                    | 50.6                    | 26.3            | 51.0              | 59.9            |
| YOLOX-L         | Modified CSP v5 | 640  | 69.0       | 50.0   | 68.5                    | 54.5                    | 29.8            | 54.5              | 64.4            |
| YOLOX-X         | Modified CSP v5 | 640  | 57.8       | 51.2   | 69.6                    | 55.7                    | 31.2            | 56.1              | 66.1            |

Цель оптимизации - получить 25 FPS при незначительном ухудшении

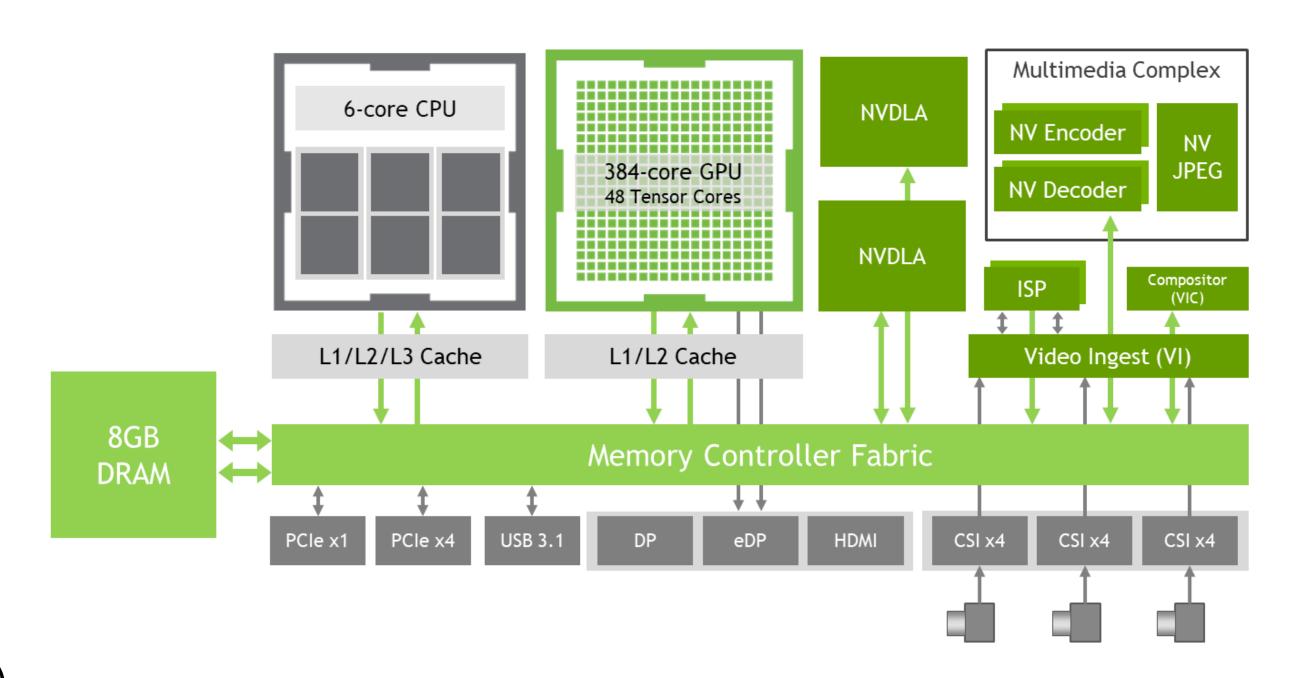
# Выбор устройства исполнения: Jetson NX

### Требования:

- Встраиваемая система
- Достаточная производительность в задачах машинного обучения
- Низкое тепловыделение

Решение: Nvidia Jetson Xavier NX

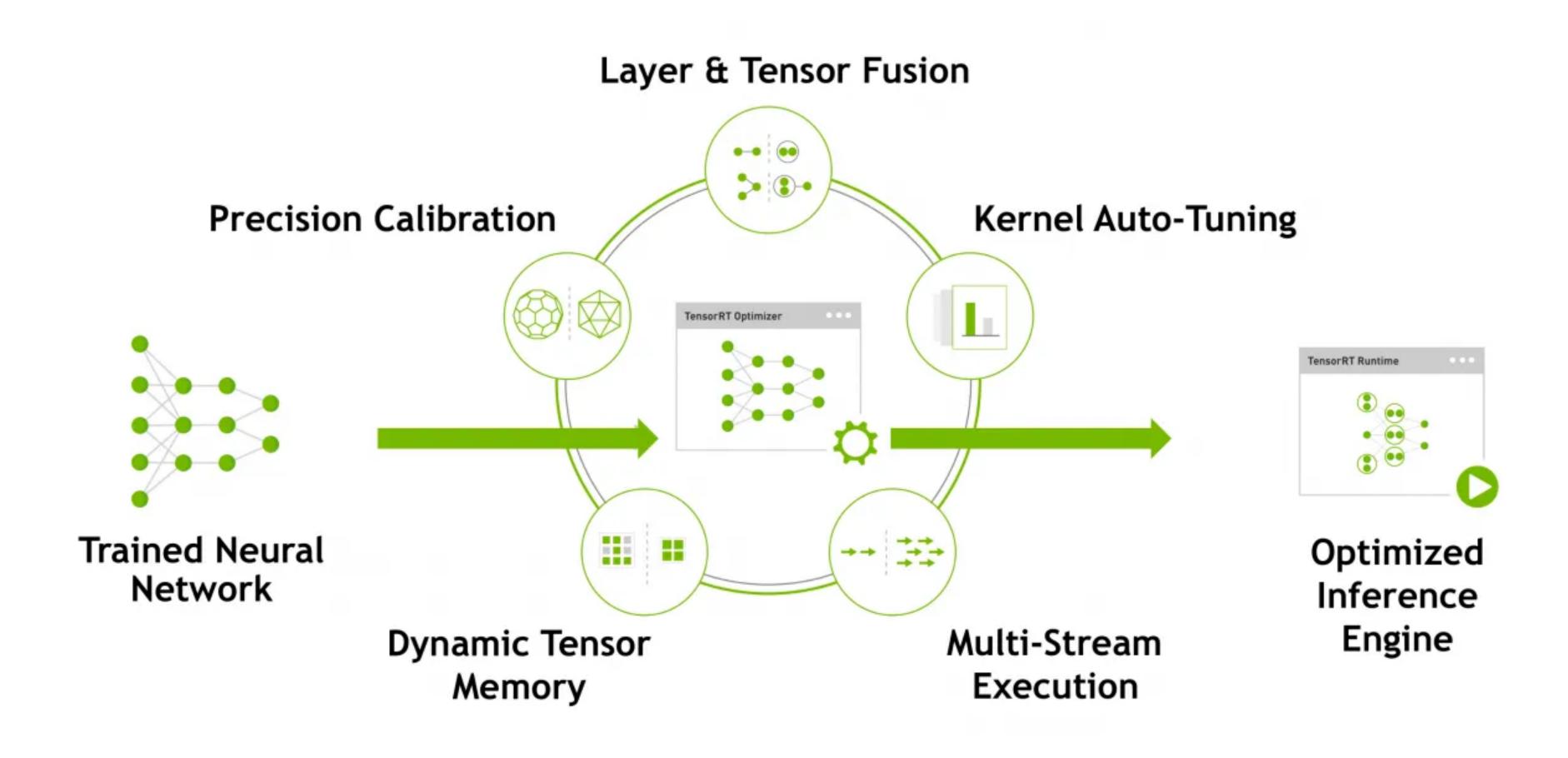
- GPU: 21 TOPS (INT 8), (384 ядра **CUDA** и 48 тензорных ядра) + 2 ускорителя глубокого обучения NVDLA
- CPU: Шестиядерный 64-разрядный процессор
- Память: 8 ГБ объединенной памяти (unified memory)
- Энергоэффективность: Потребление энергии 10-15W



Структурная схема компонентов Jetson Xavier NX

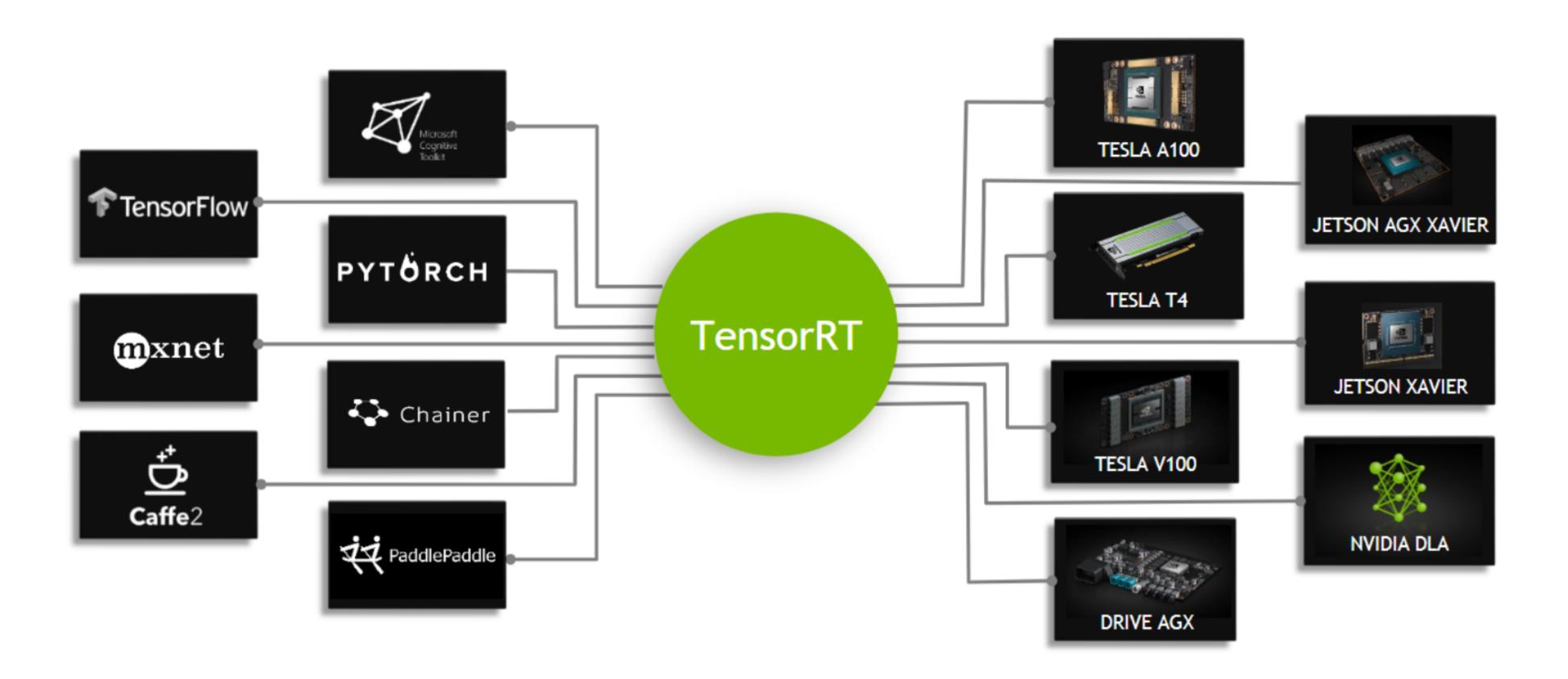
# Первоначальная реализация: TensorRT + Python

TensorRT: Оптимизатор и среда выполнения, обеспечивающие **низкую задержку** и **высокую пропускную способность** для приложений глубокого обучения.



# Первоначальная реализация: TensorRT + Python

- TensorRT трансформирует и оптимизирует обученные различными фреймворками модели в inference engine.
- Движок может быть сформирован для различных устройств Nvidia.
- Для каждого конечного устройства будет сформирован свой движок.



# Первоначальная реализация: TensorRT + Python

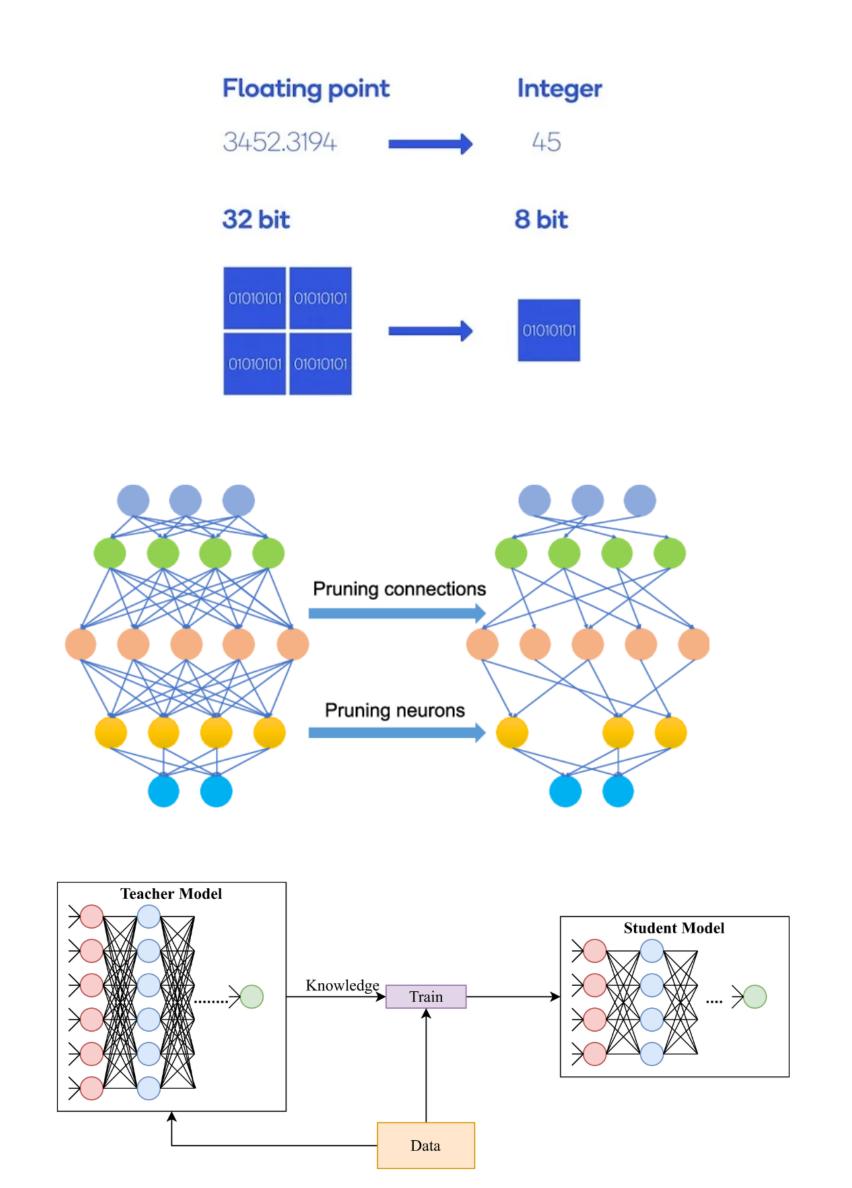
Нейронная сеть: **YOLOX-S** 

```
import torch
from torch2trt import torch2trt
                                                                       Пример экспорта в TRT
model = model.cuda().eval()
x = torch.ones((1, 3, 640, 640)).cuda()
model_trt = torch2trt(model, [x], max_workspace_size=1 << 32)
torch.save(model_trt.state_dict(), 'model_trt.pth')
from torch2trt import TRTModule
                                                                     Пример инференса в TRT
model_trt = TRTModule()
model_trt.load_state_dict(torch.load('model_trt.pth'))
x = torch.ones((1, 3, 640, 640)).cuda()
                                                                Результат: 8 FPS на Jetson NX
with torch.no_grad():
    y = model_trt(x)
```

# Повышение производительности нейронных сетей

Универсальные методы оптимизации модели:

- **Квантизация** FP16/INT8, Quantization Aware Training
- Прунинг процесс удаления «ненужных» весов модели. Позволяет значительно снизить размер модели, при этом слабо влияет на ускорение инференса.
- Дистиляция передача знаний от одной сложной модели (учитель) к более простой и быстрой (ученик). В задаче с детектором можно использовать данные от YOLOX-X для создания дополнительной разметки.



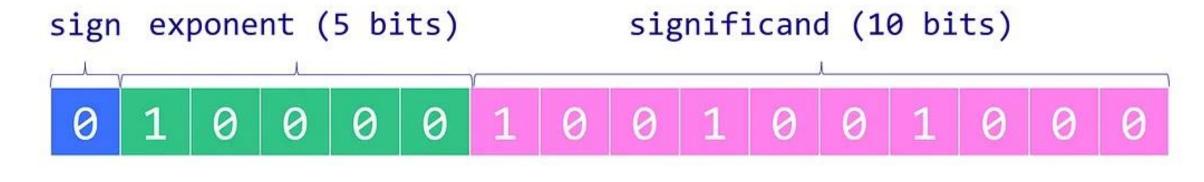
# Квантизация: простой способ ускорить работу сети

### 32-bit float (FP32)



$$(-1)^0 \times 2^{128-127} \times 1.5707964 = 3.1415927$$

### 16-bit float (FP16)



$$(-1)^0 \times 2^{128-127} \times 1.571 = 3.141$$

- **Точность** (precision) представления данных краеугольный камень производительности модели.
- **FP32** обеспечивает высокую точность, но увеличивает размер модели и замедляет вычисления.
- Квантизация до **FP16** компромисс между точностью и эффективностью, ключевой для встроенных систем.

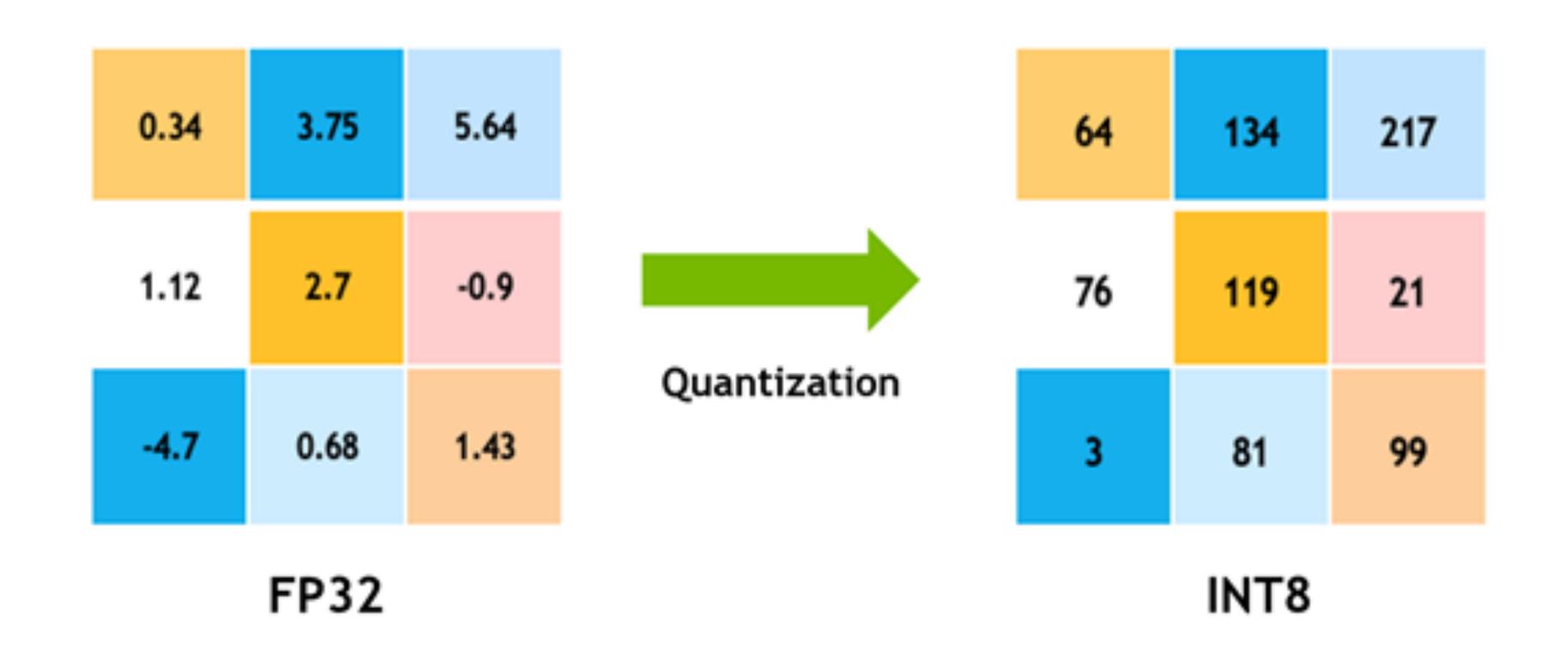
# Первоначальная реализация: TensorRT + Python + FP16

Нейронная сеть: **YOLOX-S** 

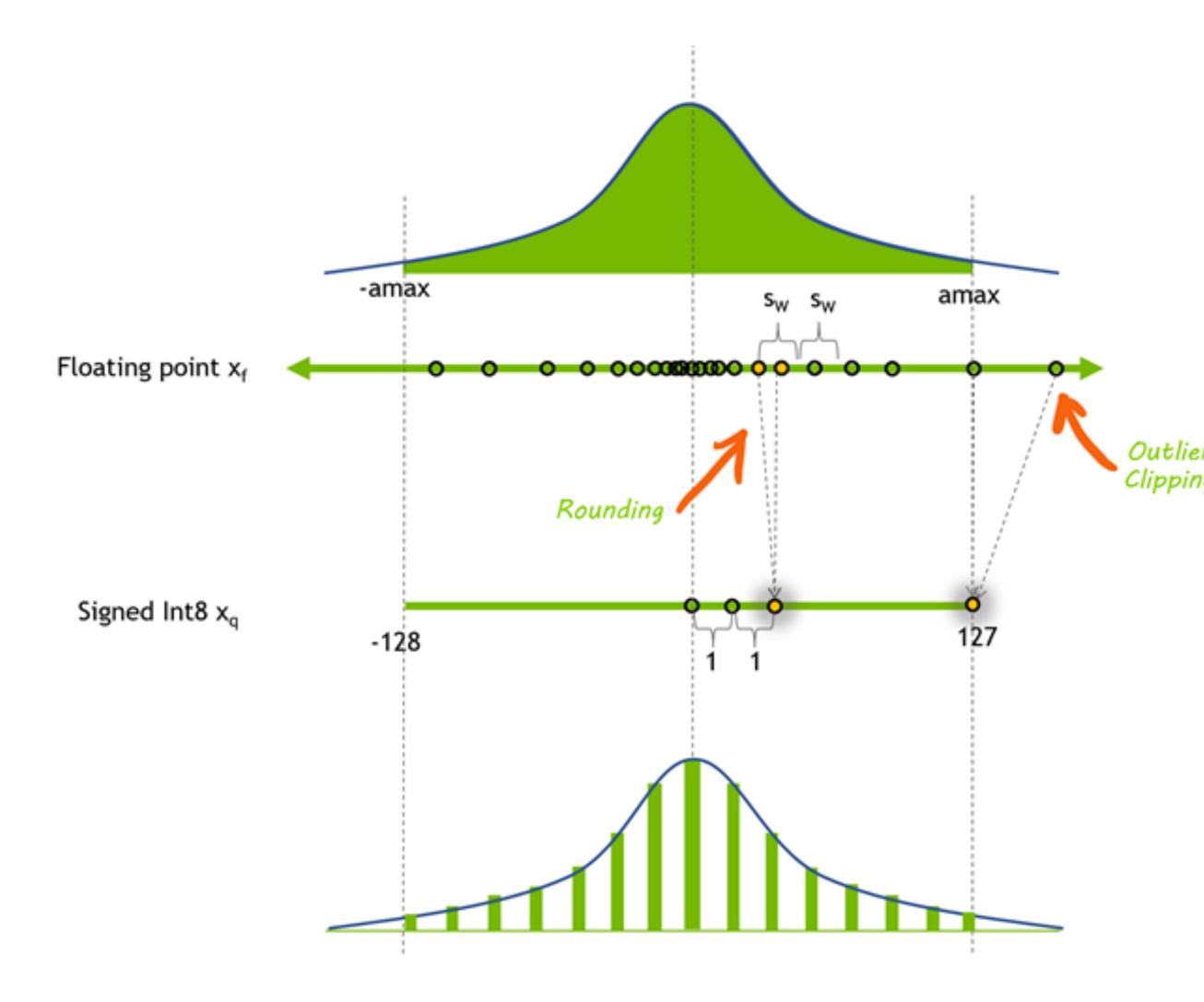
```
import torch
from torch2trt import torch2trt
model = model.cuda().eval()
                                                                           Включаем режим FP16 при
x = torch.ones((1, 3, 640, 640)).cuda()
model_trt = torch2trt(model, [x], max_workspace_size=1 << 32, fp16_mode=True)</pre>
                                                                                           конвертации
torch.save(model_trt.state_dict(), 'model_trt.pth')
from torch2trt import TRTModule
model_trt = TRTModule()
                                                                   Выполняем модель в FP16 режиме
model_trt.load_state_dict(torch.load('model_trt.pth'))
x = torch.ones((1, 3, 640, 640)).cuda()
                                                                      Результат: 16 FPS на Jetson NX,
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True):
                                                                           но мАР снизилась на 30%
   y = model_trt(x)
```

# Квантизация INТ8

- Использование INT8 сокращает вычислительные ресурсы и объем памяти, необходимые для работы модели.
- Перевод чисел с плавающей точкой в целые уменьшает точность, что влияет на производительность.
- Для минимизации потерь в точности модели необходим процесс калибровки.



# Квантизация INT8: Калибровка



- Калибровка нужна чтобы «упаковать» детальные данные о модели (FP32) в более компактный формат (INT8) без больших потерь качества.
- Запускаем модель на известных данных, собираем статистику, как модель реагирует на разнообразные входы.
- Ищем такие параметры сжатия, при которых различие между оригинальной и сжатой моделью минимально.
- В результате получаем **таблицу калибровки**, которая указывает как сжимать каждый слой, чтобы результаты оставались точными.

# Квантизация: Наш опыт использования

- INT8 калибровка сильно ускоряет время выполнения, однако метрика mAP **снижается** значительно. Одним из выходов может быть обучение большей версии модели.
- Самым эффективным для нас стало обучение с учетом квантизации или Quantization Aware Training.
   Модель «привыкает» к ограничениям квантизации на этапе обучения.
- Его использование дает 16 FPS на Jetson NX. Снижение mAP на нашем наборе данных с 80% до 76%.

# Повышение производительности нейронных сетей за счет оптимизации кода

Понимание узких мест в текущей реализации:

• В Python, нет возможности гибко управлять выделяемой памятью.

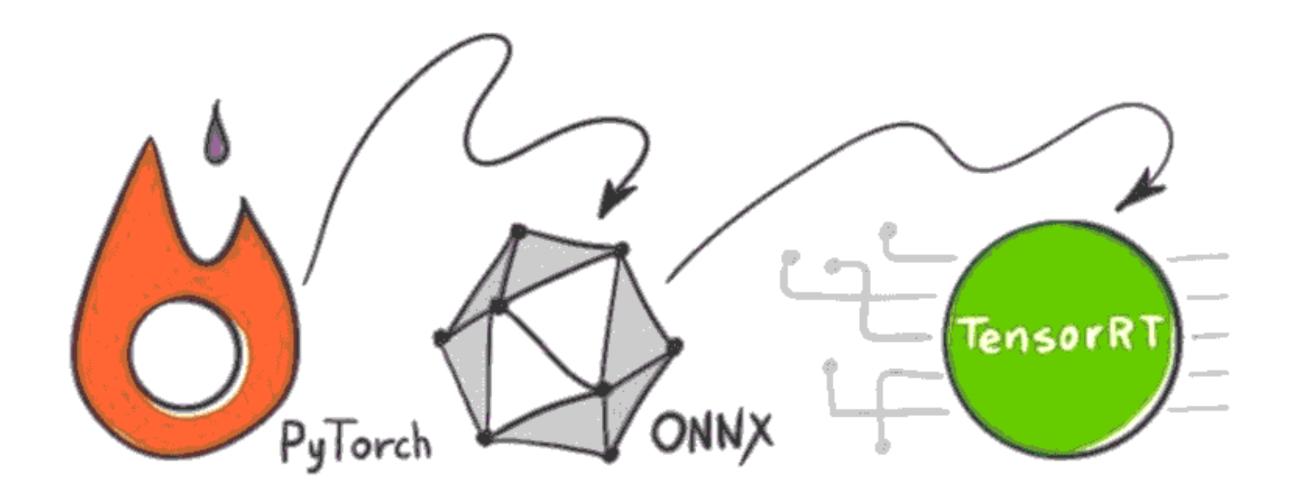
Особенности реализации конкретной архитектуры сети (умножение матриц и функции активации):

- Активация Mish в YOLO представляет композицию функций и ее реализация работает медленно.
- Реализация алгоритма фильтрации bbox (NMS) работает медленно на CPU.

# Использование TensorRT C++ API для оптимизации

#### Плюсы:

- Обеспечивает более высокую производительность по сравнению с Python.
- Интеграция TensorRT C++ API с существующими проектами и библиотеками.
- Позволяет глубоко контролировать процесс инференса.
- Увеличение скорости препроцессинга, постпроцессинга
- Снижение аллокаций памяти.
- Простой процесс формирования движка для сети из формата ONNX.



### Минусы:

- Сложность в освоении TensorRT C++ API.
- Сложность в разработке.
- Сложность в отладке кода.

# Повышение производительности: Роль C++ в ускорении инференса

- С++ позволяет нам контролировать, когда и как выделяется и освобождается память.
- Выделяем память для сети при инициализации движка, избегая повторных выделений на каждый батч.
- Выделяем память под входное изображение.
- Препроцессинга на CUDA

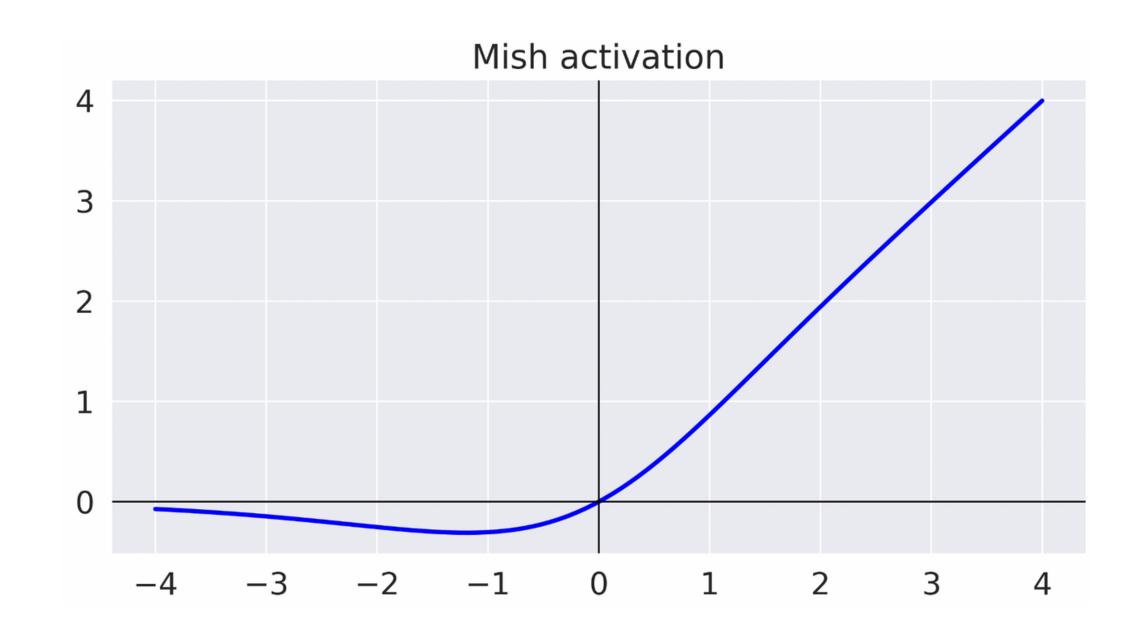
Результат: 23 FPS на Jetson NX

```
// Инициализируем компоненты TensorRT
auto builder = nvinfer1::createInferBuilder();
auto network = builder->createNetworkV2(0);
auto config = builder->createBuilderConfig();
// Загружаем onnx модель
auto parser = nvonnxparser::createParser(*network);
// Формируем engine
constructNetwork(builder, network, config, parser);
// Выделяем память под входы и выходы сети на GPU
size t inputSize = calculateVolume(
    network->getInput(0)->getDimensions()
) * sizeof(float) * 3;
size_t outputSize = calculateVolume(
   network->getOutput(0)->getDimensions()
) * sizeof(float);
cudaMalloc(&mBuffers[0], inputSize);
cudaMalloc(&mBuffers[1], outputSize);
// Выделяем память под входное изображение на GPU
cudaMalloc(&mHostImg, mHeight * mWidth * sizeof(uint8_t));
// Получаем контекст выполнения для движка
mContext = SampleUniquePtr<nvinfer1::IExecutionContext>(
    mEngine->createExecutionContext()
```

## Ускорение YOLO: Кастомные операции с TensorRT Plugin API

- TensorRT может не поддерживать все операции внутри нейронной сети.
- Для реализации не поддерживаемых операций, можно использовать плагины TensorRT.
- Плагины TensorRT это пользовательские компоненты, которые расширяют функциональность TensorRT.

Основной проблемой функции активации **Mish**, используемой в YOLO является скорость ее работы. Такой вывод можно сделать из профайлера **TensorRT Perfomance.** 



$$f(x) = x \cdot \tanh(\operatorname{softplus}(x))$$

$$softplus(x) = log(1 + e^x)$$

## Ускорение YOLO: Кастомные операции с TensorRT Plugin API

- Функция computeMish на вход принимает массив активаций
- В реализации используется порог в 20 на вычисление функции активации. Он делает ответы более предсказуемыми.

```
// mish.cu
// CUDA функция softplus
__device__ float softplus_kernel(float x, const float threshold = 20.0f) {
    if (x > threshold) {
        return x;
    } else if (x < -threshold) {</pre>
        return expf(x);
    return logf(expf(x) + 1.0f);
// CUDA функция tanh
 _device__ float tanh_kernel(float x) {
    return (2.0f / (1.0f + expf(-2.0f * x)) - 1.0f);
// Ядро с Mish
template <typename T>
__global__ void mishKernel(int n, const T* input, T* output, const T MISH_THRESHOLD) {
    const int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < n) {
       T x_val = input[idx];
        output[idx] = x_val * tanh_kernel(softplus_kernel(x_val, MISH_THRESHOLD));
// Посчитать Mish для входного массива
int computeMish(cudaStream t stream, int n, const float* input, float* output) {
    constexpr int blockSize = 1024;
    const int gridSize = (n + blockSize - 1) / blockSize;
    mishKernel<float><<<gridSize, blockSize, 0, stream>>>(n, input, output, 20.0f);
    return 0;
```

## Ускорение YOLO: Кастомные операции с TensorRT Plugin API

- Добавить заглушку с функцией активации при построении сети в torch.
- Экспортировать сеть в onnx.
- Необходимо добавить информацию о вызове плагина для операции **Mish**.
- На этапе построения исполняемого движка все операции в графе выполнения ONNX с названием «Mish» будут выполняется написанной на CUDA реализацией.
- Аналогично использовать уже реализованный плагин NonMaxSuppression для NMS, написанный на CUDA.

Использование плагинов полезно как для ускорения операций, так и для реализации новых операций, появляющихся с развитием архитектур нейронных сетей.

```
class MishCustomOp(torch.autograd.Function):
     @staticmethod
     def symbolic(g, input):
         return g.op("Mish", input)
// Переопределение builtin_op_importers.cpp в TensorRT бэкэнде для ONNX
DEFINE_BUILTIN_OP_IMPORTER(Mish)
    nvinfer1::IPluginV2* plugin = pluginCreator->createPlugin(
       node.name().c_str(), &fc
    );
    nvinfer1::IPluginV2Layer* layer = ctx->network()->addPluginV2(
        pluginInputs.data(), pluginInputs.size(), *plugin
    RETURN_ALL_OUTPUTS(layer);
```

Результат: 30 FPS на Jetson NX

# Результаты оптимизации: до и после

| Оптимизация                                                                                     | FPS Jetson NX | mAP@test |  |
|-------------------------------------------------------------------------------------------------|---------------|----------|--|
| Ванильная реализация на Python                                                                  | 8 FPS         | 80 %     |  |
| Python and FP16 quantization                                                                    | 16 FPS        | 72 %     |  |
| Python and FP16 Quantization Aware Training                                                     | 16 FPS        | 76 %     |  |
| C++ and memory allocation and CUDA preprocessing                                                | 23 FPS        | 76 %     |  |
| C++ and memory allocation and CUDA preprocessing and custom Mish OP and CUDA NMS postprocessing | 30 FPS        | 76 %     |  |

# Выводы

- Производительность улучшена: FPS детектора вырос с 8 до 30 на Jetson NX.
- Методы универсальны: Представленные методы могут быть обобщены и применен в любой области, где используются нейронные сети, чтобы обеспечить быстрый инференс.
- Роль инженерии: Представленные подходы демонстрируют, что глубокое понимание работы нейросетей позволяет адаптировать их для разнообразных задач и отраслей от аналитики автомобильного трафика до систем рекомендаций.
- Инвестиции в оптимизацию: Делает ИИ-решения доступными и снижает затраты.

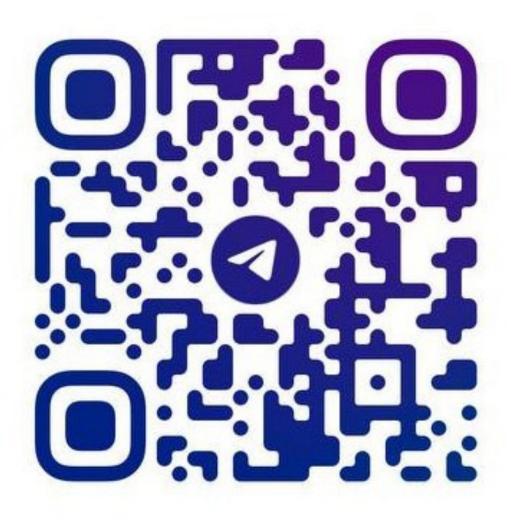
# Спасибо за внимание!

Мои контакты

Ссылки

Почта: <u>a.shalimov.work@gmail.com</u>

Телеграм:



@SHALIMOV\_AS

Проект **TensorRTx** с реализацией моделей глубокого обучения с использованием плагинов:

