
Artwork by Elise Swopes / USA

What I learned about language and
library design by working on Swift

Dave Abrahams | Principal Scientist | STLab

© 2021 Adobe. All Rights Reserved.

About the artist

Elise Swopes

New York City-based photographer and graphic
designer Elise Swopes manipulates the everyday into
unexpected works of art. With her mobile phone,
Adobe Photoshop, and Adobe Photoshop Lightroom,
she creates whimsical, weird, dreamlike scenes. This
piece was inspired from a recent visit to Copenhagen,
where the bold colors and shapes of Danish
architecture made quite an impression. A brilliant
yellow apartment building inspired Swopes to create
another entry in her surrealistic series featuring
giraffes in unusual settings.

Made with

© 2021 Adobe. All Rights Reserved.

Mark of the Unicorn | 1988

© 2021 Adobe. All Rights Reserved.

Mark of the Unicorn | 1991

© 2021 Adobe. All Rights Reserved.

Mark of the Unicorn | 1991

struct CTutorApp : CApplication {
 void ITutorApp(void);
 void DoCommand(long theCommand);
};

struct CTutorDir : CDirector {
 void ITutorDir(void);
};

struct CTutorWindow : CWindow {
 void Close();
};

extern CApplication *gApplication;
extern CDesktop *gDesktop;

void main(void) {
 gApplication = new(CTutorApp);
 ((CTutorApp*)gApplication)->ITutorApp();

 gApplication->Run();

 gApplication->Exit();
}

© 2021 Adobe. All Rights Reserved.

Mark of the Unicorn | 1995

© 2021 Adobe. All Rights Reserved.

Blame it all on this guy…

Mark Wachsler

© 2021 Adobe. All Rights Reserved.

Blame it all on this guy…

Mark Wachsler …and his tendency to learn… …and to share

© 2021 Adobe. All Rights Reserved.

Blame it all on this guy…

Mark Wachsler …and his tendency to learn… …and to share

© 2021 Adobe. All Rights Reserved.

Blame it all on this guy…

Mark Wachsler …and his tendency to learn… …and to share

© 2021 Adobe. All Rights Reserved.

A fly in the ointment

© 2021 Adobe. All Rights Reserved.

A fly in the ointment

© 2021 Adobe. All Rights Reserved.

Dave's chain of custody

Alexander Stepanov Greg Colvin Andrew Koenig

© 2021 Adobe. All Rights Reserved.

C++ Committee Papers | 1997-2013

• N1075 | STL Exception Handling Contract | Dave Abrahams | 1997
• N1086 | Making the C++ Standard Library Exception-Safe | Dave Abrahams and Greg Colvin | 1997
• N1086 | Making the C++ Standard Library Exception Safe | Dave Abrahams and Greg Colvin | 1997
• N1114 | Making the C++ Standard Library More Exception Safe | Dave Abrahams and Greg Colvin | 1997
• N1313 | Binary Search with Heterogeneous Comparison | David Abrahams | 2001
• N1356 | Predictable data layout for certain non-POD types | R.W. Grosse-Kunstleve & D. Abrahams | 2002
• N1377 | A Proposal to Add Move Semantics Support to the C++ Language | H. Hinnant, P. Dimov, D.

Abrahams 2002
• N1408 | Qualified Namespaces | David Abrahams | 2002
• N1476 | Iterator Facade and Adaptor | D. Abrahams, J. Siek, T. Witt | 2003
• N1477 | New Iterator Concepts | D. Abrahams, J. Siek, T. Witt | 2003
• N1530 | Iterator Facade and Adaptor | D. Abrahams, J. Siek, T. Witt | 2003
• N1531 | New Iterator Concepts | D. Abrahams, J. Siek, T. Witt | 2003
• N1550 | New Iterator Concepts | D. Abrahams, J. Siek, T. Witt | 2003
• N1610 | Clarification of Initialization of Class Objects by rvalues | D. Abrahams, G. Powell | 2004-02-14
• N1631 | Electronic review process | D. Abrahams, B. Dawes, J. Siek | 2004-04-11
• N1640 | New Iterator Concepts | D. Abrahams, J. Siek, T. Witt | 2004-04-10
• N1641 | Iterator Facade and Adaptor | D. Abrahams, J. Siek, T. Witt | 2004-04-10
• N1690 | A Proposal to Add an Rvalue Reference to the C++ Language | H. Hinnant,D. Abrahams,P. Dimov |

2004-09-07
• N1691 | Explicit Namespaces | David Abrahams | 2004-09-07
• N1770 | A Proposal to Add an Rvalue Reference to the C++ Language: Proposed Wording | H. Hinnant,

D. Abrahams, J. Adamczyk, P. Dimov, A. Hommel | 2005-03-05
• N1771 | Impact of the rvalue reference on the Standard Library
• H. Hinnant, D. Abrahams, P. Dimov, D. Gregor, A. Hommel, A. Meredith | 2005-03-03
• N1773 | Proposal to add Contract Programming to C++ (revision 2) | D. Abrahams, L. Crowl, T. Ottosen,

J. Widman | 2005-03-04

• N1855 | A Proposal to Add an Rvalue Reference to the C++ Language: Proposed Wording | D. Abrahams,
P. Dimov, H. Hinnant, A. Hommel | 2005-08-25

• N1873 | The Cursor/Property Map Abstraction | D. Kühl, D. Abrahams | 2005-08-26
• N2786 | Simplifying unique copy (Revision 1) | D. Gregor, D. Abrahams | 2008-09-19
• N2812 | A Safety Problem with RValue References (and what to do about it) | D. Abrahams, D. Gregor |

2008-12-05
• N2831 | Fixing a Safety Problem with Rvalue References: Proposed Wording | D. Gregor, D. Abrahams |

2009-02-07
• N2844 | Fixing a Safety Problem with Rvalue References: Proposed Wording (Revision 1) | D. Gregor,

D. Abrahams | 2009-03-05
• N2845 | Remove std::reference_closure | L. Crowl, D. Gregor, D. Abrahams | 2009-03-05
• N2855 | Rvalue References and Exception Safety | D. Gregor, D. Abrahams | 2009-03-23
• N2916 | Intentional Concept Mapping | D. Abrahams, B. Dawes | 2009-06-22
• N2918 | Exported Concept Maps | D. Abrahams, D. Gregor | 2009-06-22
• N2983 | Allowing Move Constructors to Throw | D. Abrahams, R. Sharoni, D. Gregor | 2009-11-09
• N3050 | Allowing Move Constructors to Throw (Rev. 1) | D. Abrahams, R. Sharoni, D. Gregor | 2010-03-12
• N3153 | Implicit Move Must Go | Dave Abrahams | 2010-10-17
• N3418 | Proposal for Generic (Polymorphic) Lambda Expressions | F. Vali, H. Sutter, D. Abrahams |

2012-09-21
• N3490 | ADL Control for C++ | Dave Abrahams | 2012-10-31
• N3559 | Proposal for Generic (Polymorphic) Lambda Expressions
• F. Vali, H. Sutter, D. Abrahams | 2013-03-17
• N3560 | Proposal for Assorted Extensions to Lambda Expressions | F. Vali, H. Sutter, D. Abrahams |

2013-03-17
• N3649 Generic (Polymorphic) Lambda Expressions (Revision 3) | F. Vali, H. Sutter, D. Abrahams |

2013-04-19

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1997/N1075.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1997/N1086.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1997/N1086.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1997/N1114.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2001/n1313.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1356.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1377.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1408.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1476.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1477.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1530.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1531.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1550.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1610.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1631.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1640.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1641.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1690.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1691.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1770.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1771.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1773.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1855.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1873.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2786.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2812.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2831.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2844.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2845.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2855.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2916.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2918.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2983.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3050.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3153.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3418.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3490.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3559.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3560.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3649.html

© 2021 Adobe. All Rights Reserved.

 | 1998-?

Brainchild of Beman Dawes

I was a co-founder

Spun off BoostPro Computing

Started BoostCon/C++Now conference

Beman Dawes, R.I.P.

©2021 Adobe. All Rights Reserved.

I was a total C++-head…

©2021 Adobe. All Rights Reserved.

…and I was starting over

?

© 2021 Adobe. All Rights Reserved.

The (rest of the) design team

Dave Zarzycki Doug Gregor John McCall Joe Pamer

Jordan Rose Chris Lattner Ted Kremenek Joe Groff

Value Semantics

© 2021 Adobe. All Rights Reserved.

Spooky action at a distance

intro = "hello"
message = intro
message.append(", world")

© 2021 Adobe. All Rights Reserved.

Spooky action at a distance

intro = "hello"
message = intro
message.append(", world")

"hello"intro

© 2021 Adobe. All Rights Reserved.

Spooky action at a distance

intro = "hello"
message = intro
message.append(", world")

"hello"intro

message

© 2021 Adobe. All Rights Reserved.

Spooky action at a distance

intro = "hello"
message = intro
message.append(", world")

"hello, world"intro

message

© 2021 Adobe. All Rights Reserved.

Immutable string is less spooky

intro = "hello"
message = intro
message = message.concat(", world")

© 2021 Adobe. All Rights Reserved.

Immutable string is less spooky

intro = "hello"
message = intro
message = message.concat(", world")

"hello"intro

© 2021 Adobe. All Rights Reserved.

Immutable string is less spooky

intro = "hello"
message = intro
message = message.concat(", world")

"hello"intro

message

© 2021 Adobe. All Rights Reserved.

Immutable string is less spooky

intro = "hello"
message = intro
message = message.concat(", world")

"hello"intro

message "hello, world"

© 2021 Adobe. All Rights Reserved.

Philosophy of value semantics

Maybe the problem isn't mutation by itself, but mutation of shared state?

A deeper idea than I thought.

© 2021 Adobe. All Rights Reserved.

Philosophy of value semantics

Maybe the problem isn't mutation by itself, but mutation of shared state?

A deeper idea than I thought.

Problems with the immutable string scheme:

• Creating a new string buffer for every mutation step is expensive — O(N²).

• Add StringBuilder to manage mutating string buffers in place.

• StringBuilder ends up duplicating string's non-mutating API.

• One more type for the user to learn.

© 2021 Adobe. All Rights Reserved.

Dave's declaration

 “Over my dead body will Swift have a StringBuilder!”

No rule of five

© 2021 Adobe. All Rights Reserved.

Array

Was a hack for testing the compiler, but not a design.

Had reference semantics!

Copy/assignment operators not implemented… yet?

© 2021 Adobe. All Rights Reserved.

Array

Was a hack for testing the compiler, but not a design.

Had reference semantics!

Copy/assignment operators not implemented… yet?

Time to bother Doug

© 2021 Adobe. All Rights Reserved.

Doug Gregor's declaration

“No rule-of-five programming for you!”

© 2021 Adobe. All Rights Reserved.

Doug Gregor's declaration

“No rule-of-five programming for you!”

🤷

© 2021 Adobe. All Rights Reserved.

Doug Gregor's declaration

“No rule-of-five programming for you!”

🤷

“Use copy-on-write.”

© 2021 Adobe. All Rights Reserved.

Doug Gregor's declaration

“No rule-of-five programming for you!”

🤷

“Use copy-on-write.”

“Go away and don't bother me; I need to code.”

© 2021 Adobe. All Rights Reserved.

https://gist.github.com/alf-p-steinbach/c53794c3711eb74e7558bb514204e755

© 2021 Adobe. All Rights Reserved.

No rule of five | Consequences

All variable-sized value types use CoW

Copy and assignment never have to allocate memory

Copy and assignment is always O(1)

Copy and assignment can never fail

Optimizer was taught to remove redundant reference counting.

Optimizer was taught to hoist uniqueness checks

We fearlessly pass arrays, strings, and dictionaries by value

© 2021 Adobe. All Rights Reserved.

Chris Lattner's Observation

“C++ has value semantics, but nobody uses it.”

Parameter passing

© 2021 Adobe. All Rights Reserved.

Say what you mean? | Sincere parameter passing

// Returns the sum of elements in `x` and calls `dump` on each one.
auto sumAndDump(std::vector<int> const x, void(*dump)(int)) -> int {
 ranges::for_each(x, dump);
 return std::accumulate(x.begin(), x.end(), 0);
}

© 2021 Adobe. All Rights Reserved.

Say what you mean? | Sincere parameter passing

// Returns the sum of elements in `x` and calls `dump` on each one.
auto sumAndDump(std::vector<int> const x, void(*dump)(int)) -> int {
 ranges::for_each(x, dump);
 return std::accumulate(x.begin(), x.end(), 0);
}

std::vector x = {0, 1, 2, 3};
void d(int) { x[e] += 1; }
int main() {
 std::cout << f(x, d); // Prints "6"
}

© 2021 Adobe. All Rights Reserved.

Say what you mean? | Facetious parameter passing

// Returns the sum of elements in `x` and calls `dump` on each one.
auto sumAndDump(std::vector<int> const& x, void(*dump)(int)) -> int {
 ranges::for_each(x, dump);
 return std::accumulate(x.begin(), x.end(), 0);
}

std::vector x = {0, 1, 2, 3};
void d(int) { x[e] += 1; }
int main() {
 std::cout << f(x, d); // Prints "10"
}

© 2021 Adobe. All Rights Reserved.

Say what you mean? | Facetious parameter passing

// Returns the sum of elements in `x` and calls `dump` on each one.
auto sumAndDump(std::vector<int> const& x, void(*dump)(int)) -> int {
 ranges::for_each(x, dump);
 return std::accumulate(x.begin(), x.end(), 0);
}

std::vector x = {0, 1, 2, 3};
void d(int) { x[e] += 1; }
int main() {
 std::cout << f(x, d); // Prints "10", not "6"
}

© 2021 Adobe. All Rights Reserved.

Mutation
Facetious | Pass by reference Sincere | Functional update

X y;

auto frob(X& y) -> void {
 foo();
 bar(y);

}

frob(y);

X y;

auto frob(X y) -> X {
 foo();
 bar(y);
 return y;
}

y = frob(y);

© 2021 Adobe. All Rights Reserved.

Mutation
Facetious | Pass by reference Sincere | Functional update

X y;

auto frob(X& y) -> void {
 foo();
 bar(y);
}

frob(y);

X y;

auto frob(X y) -> X {
 foo();
 bar(y);
 return y;
}

y = frob(y);

© 2021 Adobe. All Rights Reserved.

Mutation in Swift

var y: X;

func frob(_ y: inout X) -> Void {
 foo();
 bar(&y);
}

frob(y);

© 2021 Adobe. All Rights Reserved.

Dave's last theorem

Swift's model of parameter passing can be extended to
allow noncopyable types to be efficently passed “by value”
or by move with minimal complexity, and the model could

be applied to a future version of C++.

© 2021 Adobe. All Rights Reserved. Adobe Confidential.

Artwork by Elise Swopes / USA

