
Implementing
Domain-Driven Design
as a pragmatic developer

Halil İbrahim Kalkan
Co-founder, Volosoft

Download the Presentation

Writing «simple» Code

«Playing football is very simple, but
playing simple football is the hardest
thing there is!»

Johan Cruyff

«Writing code is very simple, but
writing simple code is the hardest
thing there is!»

Halil İbrahim Kalkan

About Me: Halil İbrahim Kalkan

2003-2007, Computer Engineering

2007 - 2015: Software developer, software architect, team leader

2016 - ∞: Co-founder, software architect

2013 - ∞: Lead developer of the open source ABP Framework

Multi-threading, distributed/microservice systems, OOP, DDD, software
architectures.. etc.

Still active coder, open-source contributor
30,000+ total contributions on GitHub

1997, Started programming (at 14 years old, with Turbo Pascal)

Agenda

• Part-I: What is DDD?
• Architecture & layers
• Execution flow
• Building blocks
• Common principles

• Part-II: Implementing DDD
• Layering a Visual Studio solution
• Rules & Best Practices
• Examples

Part-I: What is DDD?

What is DDD?

• Domain-driven design (DDD) is an approach to software
development for complex needs by connecting the
implementation to an evolving model

• Focuses on the core domain logic rather than the infrastructure.
• Suitable for complex domains and large-scale applications.
• Helps to build a flexible, modular and maintainable code base,

based on the Object-Oriented Programming principles.

Domain Driven Design
Layers & Clean Architecture

Infrastructure
Layer

Presentation Layer

Application Layer

Domain Layer

Domain Driven Design
Core Building Blocks

Domain Layer
• Entity
• Value Object
• Aggregate &

Aggregate Root
• Repository
• Domain Service
• Specification
• …

Application Layer
• Application Service
• Data Transfer Object

(DTO)
• Unit of Work
• …

Domain Driven Design
Layering in Visual Studio

Application Layer

Domain Layer

Infrastructure Layer
Presentation Layer

Test Projects

• Domain.Shared
• IssueConsts
• IssueType (enum)

• Domain
• Issue
• IssueManager
• IIssueRepository

• Application.Contracts
• IIssueAppService
• IssueDto, IssueCreationDto

• Application
• IssueAppService (implementation)

• Infrastructure / EntityFrameworkCore
• EfCoreIssueRepository
• MyDbContext

• Web
• IssueController
• IssueViewModel
• Issues.cshtml
• Issues.js

Domain Driven Design
Layering in Visual Studio

Domain.SharedDomain

App.ContractsApplication

Web

Infrastructure / EntityFrameworkCore

Domain Driven Design
The Execution Flow

Application
Services

Domain Services

Entities

Repositories
(interface)

HTTP API

MVC UIBrowsers

Remote clients DTO

DTO

HTTP request

HTTP request

HTML/JSON/js/css

JSON

DOMAIN layerAPPLICATION layerPRESENTATION layer

Distributed Services
Layer

Authorization
Validation
Exception Handling
Audit Logging
Caching

Authorization
Validation
Audit Logging
Unit of Work / DB Transaction

C R O S S C U T T I N G C O N C E R N S

Domain Driven Design
Common Principles
• Database / ORM independence

• Presentation technology agnostic

• Doesn’t care about reporting / mass querying

• Focuses on state changes of domain objects

Part-II: Implementation

Aggregates
Example

Guid Id

string Text
bool IsClosed
Enum CloseReason

Guid RepositoryId
Guid AssignedUserId

ICollection<Comment>
ICollection<IssueLabel>

Issue (aggregate root)

Guid IssueId
Guid LabelId

IssueLabel (value obj)

Guid Id

string Text
DateTime CreationTime

Guid IssueId
Guid UserId

Comment (entity)

Guid Id

string Name
…
…

Repository (agg. root)

Guid Id

string UserName
string Password
…

User (agg. root)

Guid Id

string Name
string Color
…

Label (agg. root)

Guid Id

…
…

Other (entity)

Issue Aggregate

Repository
Aggregate

User Aggregate

Label Aggregate

Aggregate Roots
Principles
• Saved & retrieved as a single unit

(with all sub-collections & all
properties)

• Should maintain self integrity &
validity by implementing domain
rules & constraints

• Responsible to manage sub
entities/objects

• An aggregate is generally
considered as a transaction
boundary.

• Should be serializable (already
required for NoSQL databases)

Aggregate Roots
Rule: Reference Other Aggregates only by Id

• Don’t define collections to other
aggregates!

• Don’t define navigation property to other
aggregates!

• Reference to other aggregate roots by Id.

Aggregate Roots
Tip: Keep it small

Considerations
• Objects used together
• Query Performance
• Data Integrity & Validity

Aggregate Roots / Entities
Primary Keys
Aggregate Root

Define a single Primary Key (Id)

Entity

Can define a composite Primary Key

Suggestion: Prefer GUID as the PK

Aggregate Roots & Entities
Constructor

• Force to create a VALID entity
• Get minimum required arguments

• Check validity of inputs

• Initialize sub collections

• Create a private default constructor for
ORMs & deserialization

• Tip: Get id as an argument, don’t use
Guid.NewGuid() inside the constructor

• Use a service to create GUIDs

Aggregate Roots & Entities
Property Accessors & Methods

• Maintain object validity

• Use private setters when needed

• Change properties via methods

Aggregate Roots & Entities
Business Logic & Exceptions

• Implement Business Rules

• Define and throw specialized
exceptions

Aggregate Roots & Entities
Business Logic Requires External Services
• How to implement when you need external services?

• Business Rule: Can not assign more than 3 issues to a user!

Aggregate Roots & Entities
Business Logic Requires External Services
• How to implement when you need external services?

• Business Rule: Can not assign more than 3 issues to a user!

ALTERNATIVE..?
Create a Domain Service!

Repositories
Principles
A repository is a collection-like interface to interact with the database
to read and write entities

• Define interface in the domain layer, implement in the infrastructure

• Do not include domain logic

• Repository interface should be database / ORM independent

• Create repositories for aggregate roots, not all entities

Repositories
Do not Include Domain Logic

What is an In-Active issue?

Repositories
Do not Include Domain Logic

• Implicit definition of a
domain rule!

• How to re-use this
expression?

Repositories
Do not Include Domain Logic

• Implicit definition of a
domain rule!

• How to re-use this
expression?

• Copy/paste?
• Solution: The Specification

Pattern!

Specifications
The Specification Interface

A specification is a named, reusable & combinable class to filter
objects.

Specifications
Extended Specification Interface

A specification is a named, reusable & combinable class to filter
objects.

Specifications
A Base Specification Class

Specifications
Define a Specification

Specifications
Use the Specification

Specifications
Use the Specification

Specifications
Parameterized Specifications

Specifications
Combining Multiple Specifications

Domain Services
Principles

• Implements domain logic that;
• Depends on services and repositories

• Needs to work with multiple entities / entity types

• Works with domain objects, not DTOs

Domain Services
Example
Business Rule: Can not assign more than 3 issues to a user

Domain Services
Example

Application Services
Principles

• Implement use cases of the application (application logic)

• Do not implement core domain logic

• Get & return Data Transfer Objects, not entities

• Use domain services, entities, repositories and other domain objects
inside

Application Services
Example

• Inject domain services & repositories

• Get DTO as argument

• Get aggregate roots from repositories

• Use domain service to perform the
domain logic

• Always update the entity explicitly
(don’t assume the change tracking)

Application Services
Common DTO Principles Best Practices
• Should be serializable

• Have a parameterless (default) constructor

• Should not contain any business logic

• Never inherit from entities! Never reference to entities!

Application Services
Input DTO Best Practices
• Define only the properties needed for the use case

• Do not reuse same input DTO for multiple use
cases (service methods)

• Id is not used in create! Do not share
same DTO for create & update!

• Password is not used in Update and
ChangeUserName!

• CreationTime should not be sent by
the client!

Application Services
Input DTO Best Practices

• Define only the properties needed for the use case

• Do not reuse same input DTO for multiple use cases
(service methods)

Application Services
Input DTO Best Practices
• Implement only the formal validation (can use data annotation attributes)

• Don’t include domain validation logic (ex: unique username constraint)

Application Services
Output DTO suggestions
• Keep output DTO count minimum. Reuse where possible (except input DTOs as output DTO).

• Can contain more properties than client needs

• Return the entity DTO from Create & update methods.

• Exception: Where performance is critical, especially for large result sets.

Application Services
Output DTO suggestions

Application Services
Object to Object Mapping

• Use auto object mapping libraries (but, carefully – enable configuration
validation)

• Do not map input DTOs to entities.

• Map entities to output DTOs

Application Services
Example: Entity Creation & DTO Mapping

• Don’t use DTO to entity auto-
mapping, use the entity
constructor.

• Perform additional domain actions.

• Use repository to insert the entity.

• Return DTO using auto-mapping.

Multiple Application Layers

Domain Layer

Back Office Application
Layer

Public Web Application
Layer

Mobile Application
Layer

Mobile APIMVC UIREST API

SPA Browser Mobile App

• Create separate application layers
for each application type.

• Use a single domain layer to share
the core domain logic.

Application Logic vs Domain Logic

Examples..?

Business Logic

Application Logic
(Use Cases)

Domain Logic

Application Logic vs Domain Logic

• Don’t create domain services to perform
simple CRUD operations!

• Use Repositories in the application services.

• Never pass DTOs to or return DTOs from
domain services!

• DTOs should be in the application layer.

Application Logic vs Domain Logic
• Domain service should check

duplicate organization name.

• Domain service doesn’t perform
authorization!

• Do in the application layer!

• Domain service must not depend on
the current user!

• Do in the application/UI/API layer!

• Domain service must not send email
that is not related to the actual
business!

• Do in the application layer or implement
via domain events.

Application Logic vs Domain Logic

• Application service methods should be a unit of
work (transactional) if contains more than one
database operations.

• Authorization is done in the application layer.

• Payment (infrastructure service) and Organization
creation should not be combined in the domain
layer. Should be orchestrated by the application
layer.

• Email sending can be done in the application service.

• Do not return entities from application services!

• Why not moving payment logic inside the domain
service?

Recommended Books

Domain Driven Design
Eric Evans

Implementing
Domain Driven Design

Vaughn Vernon

Clean Architecture
Robert C. Martin

The Reference Book!
DOWNLOAD THE E-BOOK FOR FREE

THANKS FOR
WATCHING
Download the Presentation

Questions..?

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Agenda
	Slide 5: Part-I: What is DDD?
	Slide 6: What is DDD?
	Slide 7: Domain Driven Design Layers & Clean Architecture
	Slide 8: Domain Driven Design Core Building Blocks
	Slide 9: Domain Driven Design Layering in Visual Studio
	Slide 10: Domain Driven Design Layering in Visual Studio
	Slide 11: Domain Driven Design The Execution Flow
	Slide 12: Domain Driven Design Common Principles
	Slide 13: Part-II: Implementation
	Slide 14: Aggregates Example
	Slide 15: Aggregate Roots Principles
	Slide 16: Aggregate Roots Rule: Reference Other Aggregates only by Id
	Slide 17: Aggregate Roots Tip: Keep it small
	Slide 18: Aggregate Roots / Entities Primary Keys
	Slide 19: Aggregate Roots & Entities Constructor
	Slide 20: Aggregate Roots & Entities Property Accessors & Methods
	Slide 21: Aggregate Roots & Entities Business Logic & Exceptions
	Slide 22: Aggregate Roots & Entities Business Logic Requires External Services
	Slide 23: Aggregate Roots & Entities Business Logic Requires External Services
	Slide 24: Repositories Principles
	Slide 25: Repositories Do not Include Domain Logic
	Slide 26: Repositories Do not Include Domain Logic
	Slide 27: Repositories Do not Include Domain Logic
	Slide 28: Specifications The Specification Interface
	Slide 29: Specifications Extended Specification Interface
	Slide 30: Specifications A Base Specification Class
	Slide 31: Specifications Define a Specification
	Slide 32: Specifications Use the Specification
	Slide 33: Specifications Use the Specification
	Slide 34: Specifications Parameterized Specifications
	Slide 35: Specifications Combining Multiple Specifications
	Slide 36: Domain Services Principles
	Slide 37: Domain Services Example
	Slide 38: Domain Services Example
	Slide 39: Application Services Principles
	Slide 40: Application Services Example
	Slide 41: Application Services Common DTO Principles Best Practices
	Slide 42: Application Services Input DTO Best Practices
	Slide 43: Application Services Input DTO Best Practices
	Slide 44: Application Services Input DTO Best Practices
	Slide 45: Application Services Output DTO suggestions
	Slide 46: Application Services Output DTO suggestions
	Slide 47: Application Services Object to Object Mapping
	Slide 48: Application Services Example: Entity Creation & DTO Mapping
	Slide 49: Multiple Application Layers
	Slide 50: Application Logic vs Domain Logic
	Slide 51: Application Logic vs Domain Logic
	Slide 52: Application Logic vs Domain Logic
	Slide 53: Application Logic vs Domain Logic
	Slide 54: Recommended Books
	Slide 55: The Reference Book!
	Slide 56

