
Windows Internals for 
.NET Developers

Pavel Yosifovich

@zodiacon

zodiacon@live.com

mailto:zodiacon@live.com


Agenda

•Windows Architecture and .NET

• Jobs

•Threads

•Kernel Objects

•Windows Runtime

•Summary

2



About Me

• Developer, Trainer, Author and Speaker

• Co-author: Windows Internals 7th edition, Part 1 (2017)

• Author: WPF Cookbook (2012), Mastering Windows 8 C++ App 
Development (2013)

• Pluralsight author

• Author of several open-source tools 
(http://github.com/zodiacon)

• Blogs: http://blogs.microsoft.co.il/pavely, 
https://scorpiosoftware.net/

3

http://github.com/zodiacon
http://blogs.microsoft.co.il/pavely
https://scorpiosoftware.net/


Windows Architecture Overview

Subsystem DLLs

Hardware Abstraction Layer (HAL)

Executive

Subsystem
Process

(CSRSS.exe)
User Processes

Win32k.Sys

Device Drivers Kernel

Service
Processes

System
Processes

User Mode

Kernel Mode

NTDLL.DLL

Hyper-V Hypervisor Kernel Mode
(hypervisor context)

4

CLR / .NET FCL



.NET Today

•Part of Windows

• Fully supported

•User mode only

• Kernel mode CLR/.NET possible (e.g. “Singularity”)

•Not a complete wrapper over the Windows API

•Opportunities to extend and optimize

•What about .NET Core?

5



Windows Numeric Versions

• Windows NT 4 (4.0)

• Windows 2000 (5.0)

• Windows XP (5.1)

• Windows Server 2003, 2003 R2 (5.2)

• Windows Vista, Server 2008 (6.0)

• Windows 7, Server 2008 R2 (6.1)

• Windows 8, Server 2012 (6.2)

• Windows 8.1, Server 2012 R2 (6.3)

• Windows 10, Server 2016 (10.0)

// get version...

if(version.Major >= 5 && version.Minor >= 1) {

// XP or later: good to go!?

}

By default, reported as 6.2

By default, reported as 6.2

6



Windows Versions

7



Windows Subsystem APIs
• Windows API (“Win32”)

• Classic C API from the first days of Windows NT

• COM based APIs

• Especially in newer (Vista+) APIs

• Examples: BITS, DirectX, WIC, DirectShow, Media Foundation, Task Host

• .NET

• Managed libraries running on top of the CLR

• Windows Runtime (WinRT)

• New unmanaged API available for Windows 8+

• Built on top of an enhanced version of COM

• The Native API

• Implemented by NtDll.dll

8



Function Call Flow

call NtReadFile

sysenter / syscall

Kernel32.DLL

NtDll.DLL

call NtReadFile NtOskrnl.EXE (Executive)

NtReadFile:
call driver

NtOskrnl.EXE (I/O Manager)

initiate I/O
return to caller

SomeDriver.sys

call FileStream.Read App.exe

User mode

Kernel mode

9

call ReadFile Mscorlib.dll



Jobs
• A job is a kernel object that manages a set of one or more processes

• A job can impose limits on its processes

• Provides accounting information

• Can associate an I/O completion port with a job

• Once a process is assigned to a job, it cannot get out

• Process inside a job that creates a child process

• Child process are added to the same job by default

• Unless the CREATE_BREAKWAY_FROM_JOB flag is specified in 
CreateProcess (and the job allows breaking out of it)

10



Job Limits Examples
• Maximum processes active in a job

• CPU 

• Per-job and per-process CPU time

• CPU Affinity, process priority class

• CPU rate control (Windows 8+)

• Memory

• Minimum and maximum working set

• Process commit maximum

• Network

• Maximum bandwidth (Windows 10)

• UI

• USER and GDI handles, clipboard access, exiting windows, desktop creation/switching

11



CPU Rate Control

12



Nested Jobs
• Prior to Windows 8

• A process could be assigned to a single job

• Trying to assign a process to a second job just failed

• Windows 8 and later

• A process can be part of more than one job

• A job hierarchy is created (if possible)

• Limits in child jobs can be more restrictive than its parents’ jobs limits

▪ But not vice versa

• The ability to nest jobs makes jobs much more useful

13



Nested Jobs Example

•Add P1 to Job 1

•Add P1 to Job 2

•Add P2 to Job 1

•Add P2 to Job 3

•Add P3 to Job 2

•Add P4 to Job 1

14

Job 1

Job 2Job 3

P3P1P2

P4



Jobs API
• CreateJobObject

• Create a job object or open a named job object

• OpenJobObject

• Open a named job object

• AssignProcessToJobObject

• Add a process to a job

• Set(Query)InformationJobObject

• Set various limits on the job (query job information)

• TerminateJobObject

• Terminate all processes belonging to the job

15



Normal Priority Class

High Priority Class

Thread Priorities (Windows Subsystem View)

Idle Priority Class

1 4 8 13 24 31

Normal Priorities Realtime Priorities

Realtime Priority Class

Priority

Above Normal Priority Class

Below Normal Priority Class

6 10 15 16



Manipulating Priorities

•Process

•Win32: SetPriorityClass

• .NET: Process.PriorityClass property

•Thread

•Win32: SetThreadPriority

• .NET: Thread.Priority property

▪Only the middle five levels are exposed

17



Thread and Process Priorities

18



Processor Affinity

•Soft affinity

• Ideal processor

•Hard affinity

• Always respected

•CPU Sets (Windows 10)

• .NET indirectly supports soft and hard affinity

• But not CPU sets

19



CPU Sets
• A different kind of affinity

• The Windows API provides control over process and 
thread CPU sets

• SetProcessDefaultCpuSets, 
SetThreadSelectedCpuSets

• System CPU Sets control is available through an 
undocumented NtSetSystemInformation call

System Process Thread

20



Affinity and CPU Sets

21



Waitable Kernel Objects

•Also known as “Dispatcher Objects”

WaitHandle

Mutex Semaphore EventWaitHandle

AutoResetEvent ManualResetEvent

22



Wrapping Kernel Objects

23



Kernel Objects Namespace

•By default, all named objects created in 
\Sessions\x\BaseNamedObjects

•Session 0 objects created in \BaseNamedObjects

• Can create/open named objects in session 0 with 
“Global\” prefix

• Cannot be used by UWP processes

•Private namespaces

24



Object Names and Namespaces

25



The Windows Runtime and .NET

•The Windows Runtime

• Unmanaged API primarily for use in UWP apps

•C# projection is excellent

•Parts of the Windows Runtime are usable from 
classic (desktop) apps

26



WinRT in Classic Apps

27



Summary

•The .NET framework is rich in functionality

•However, the Windows platform has more than .NET 
can cover

• Interop is sometimes key

•Experiment!

28


