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About Me

• Developer, Trainer, Author and Speaker

• Co-author: Windows Internals 7th edition, Part 1 (2017)

• Author: WPF Cookbook (2012), Mastering Windows 8 C++ App 
Development (2013)

• Pluralsight author

• Author of several open-source tools 
(http://github.com/zodiacon)

• Blogs: http://blogs.microsoft.co.il/pavely, 
https://scorpiosoftware.net/
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Windows Architecture Overview
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Hardware Abstraction Layer (HAL)

Executive

Subsystem
Process

(CSRSS.exe)
User Processes
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Hyper-V Hypervisor Kernel Mode
(hypervisor context)
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.NET Today

•Part of Windows

• Fully supported

•User mode only

• Kernel mode CLR/.NET possible (e.g. “Singularity”)

•Not a complete wrapper over the Windows API

•Opportunities to extend and optimize

•What about .NET Core?
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Windows Numeric Versions

• Windows NT 4 (4.0)

• Windows 2000 (5.0)

• Windows XP (5.1)

• Windows Server 2003, 2003 R2 (5.2)

• Windows Vista, Server 2008 (6.0)

• Windows 7, Server 2008 R2 (6.1)

• Windows 8, Server 2012 (6.2)

• Windows 8.1, Server 2012 R2 (6.3)

• Windows 10, Server 2016 (10.0)

// get version...

if(version.Major >= 5 && version.Minor >= 1) {

// XP or later: good to go!?

}

By default, reported as 6.2

By default, reported as 6.2
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Windows Versions
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Windows Subsystem APIs
• Windows API (“Win32”)

• Classic C API from the first days of Windows NT

• COM based APIs

• Especially in newer (Vista+) APIs

• Examples: BITS, DirectX, WIC, DirectShow, Media Foundation, Task Host

• .NET

• Managed libraries running on top of the CLR

• Windows Runtime (WinRT)

• New unmanaged API available for Windows 8+

• Built on top of an enhanced version of COM

• The Native API

• Implemented by NtDll.dll
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Function Call Flow

call NtReadFile

sysenter / syscall

Kernel32.DLL

NtDll.DLL

call NtReadFile NtOskrnl.EXE (Executive)

NtReadFile:
call driver

NtOskrnl.EXE (I/O Manager)

initiate I/O
return to caller

SomeDriver.sys

call FileStream.Read App.exe

User mode

Kernel mode
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Jobs
• A job is a kernel object that manages a set of one or more processes

• A job can impose limits on its processes

• Provides accounting information

• Can associate an I/O completion port with a job

• Once a process is assigned to a job, it cannot get out

• Process inside a job that creates a child process

• Child process are added to the same job by default

• Unless the CREATE_BREAKWAY_FROM_JOB flag is specified in 
CreateProcess (and the job allows breaking out of it)
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Job Limits Examples
• Maximum processes active in a job

• CPU 

• Per-job and per-process CPU time

• CPU Affinity, process priority class

• CPU rate control (Windows 8+)

• Memory

• Minimum and maximum working set

• Process commit maximum

• Network

• Maximum bandwidth (Windows 10)

• UI

• USER and GDI handles, clipboard access, exiting windows, desktop creation/switching
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CPU Rate Control
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Nested Jobs
• Prior to Windows 8

• A process could be assigned to a single job

• Trying to assign a process to a second job just failed

• Windows 8 and later

• A process can be part of more than one job

• A job hierarchy is created (if possible)

• Limits in child jobs can be more restrictive than its parents’ jobs limits

▪ But not vice versa

• The ability to nest jobs makes jobs much more useful
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Nested Jobs Example

•Add P1 to Job 1

•Add P1 to Job 2

•Add P2 to Job 1

•Add P2 to Job 3

•Add P3 to Job 2

•Add P4 to Job 1

14

Job 1

Job 2Job 3

P3P1P2

P4



Jobs API
• CreateJobObject

• Create a job object or open a named job object

• OpenJobObject

• Open a named job object

• AssignProcessToJobObject

• Add a process to a job

• Set(Query)InformationJobObject

• Set various limits on the job (query job information)

• TerminateJobObject

• Terminate all processes belonging to the job
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Normal Priority Class

High Priority Class

Thread Priorities (Windows Subsystem View)

Idle Priority Class

1 4 8 13 24 31

Normal Priorities Realtime Priorities

Realtime Priority Class

Priority

Above Normal Priority Class

Below Normal Priority Class

6 10 15 16



Manipulating Priorities

•Process

•Win32: SetPriorityClass

• .NET: Process.PriorityClass property

•Thread

•Win32: SetThreadPriority

• .NET: Thread.Priority property

▪Only the middle five levels are exposed
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Thread and Process Priorities
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Processor Affinity

•Soft affinity

• Ideal processor

•Hard affinity

• Always respected

•CPU Sets (Windows 10)

• .NET indirectly supports soft and hard affinity

• But not CPU sets
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CPU Sets
• A different kind of affinity

• The Windows API provides control over process and 
thread CPU sets

• SetProcessDefaultCpuSets, 
SetThreadSelectedCpuSets

• System CPU Sets control is available through an 
undocumented NtSetSystemInformation call

System Process Thread
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Affinity and CPU Sets
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Waitable Kernel Objects

•Also known as “Dispatcher Objects”

WaitHandle

Mutex Semaphore EventWaitHandle

AutoResetEvent ManualResetEvent
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Wrapping Kernel Objects
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Kernel Objects Namespace

•By default, all named objects created in 
\Sessions\x\BaseNamedObjects

•Session 0 objects created in \BaseNamedObjects

• Can create/open named objects in session 0 with 
“Global\” prefix

• Cannot be used by UWP processes

•Private namespaces
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Object Names and Namespaces
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The Windows Runtime and .NET

•The Windows Runtime

• Unmanaged API primarily for use in UWP apps

•C# projection is excellent

•Parts of the Windows Runtime are usable from 
classic (desktop) apps
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WinRT in Classic Apps
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Summary

•The .NET framework is rich in functionality

•However, the Windows platform has more than .NET 
can cover

• Interop is sometimes key

•Experiment!
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