

Error handling: doing it right!

1 + 1 !== 3

A guide by Ruben Bridgewater

Why is

error-handling

hard

Callbacks

Callbacks

Callbacks

Promises

Promisify

Promisify

Promisify

REAL

LIFE

Primitive errors

Primitive errors

Primitive errors

Express

 Debugging horror

HAPPY PATH

Nested try / catch

Rejections

Unhandled rejections

Faulty tests

 Doing it right! Doing
it right!

Error classes

Error classes

Error classes

Error classes

➔ Create application specific base class

➔ Validate input

➔ Move in individual module

➔ Only source of truth

➔ Contain all information for users and
developers.

An abstract error module is
easy to use and contains

ALL NECESSARY
INFORMATION in
one place.

Error handler layers

Each layer handles a specific part of
the application.

Each database should have a layer.

Express / fastify / http should have

one.

Outgoing requests ...

Express

Fastify

Databases

- Fallbacks / recoverable errors
- Transparent to the user

Requests

Debugging utils

- Multiple resolves
- Promise hooks
- Proper logging
- Stack traces
- Unhandled rejection flag

util.promisify

util.promisify

Multiple resolves

Multiple resolves

--unhandled-rejections

Async Stack traces

Summary / Rules

➔ Use error classes specifically set up for

the application

➔ Implement abstract error handlers

➔ Always use async / await

➔ Make errors expressive

➔ Use promisify if necessary

➔ Return proper error statuses and codes

➔ Make use of promise hooks

Contact

twitter.com/BridgeAR
github.com/BridgeAR
ruben@bridgewater.de

Twitter: @BridgeAR
Email: ruben@bridgewater.de

“There are about 15-50 errors per 1000 lines of code”
Steve McConnell’s, Code Complete:

Thank you!

