Programming language memory models:
Problems, Solutions, and Directions

Anton Podkopaev
anton@podkopaev.net

—
C‘V MAX PLANCK INSTITUTE

- FOR SOFTWARE SYSTEMS RESEARCH

NATIONAL RESEARCH
UNIVERSITY

podkopaev.net

Anton Podkopaev

Researcher @ JetBrains Research
Postdoc © MPI-SWS
Docent © HSE

Programming languages
Weak memory concurrency
Compilation correctness
Functional programming

Seftware Proof Engineer (Coq)

Programming language memory models:
Problems, Solutions, and Directions

Programming language memory models:
Problems, Solutions, and Directions

Programming language memory models:
Problems, Solutions, and Directions

Memory model defines behaviors
of concurrent system

Programming language memory models:
Problems, Solutions, and Directions

Memory model defines behaviors
of concurrent system

Doesn'’t there exist The Memory Model?

How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs

LESLIE LAMPORT .

Sequential Consistency:
system’s behavior —
interleaving of threads

1

0

a=1;b

1

0;b=

a

1;b6=1

a

0

a=1;b

1

0;b=

a

1;b6=1

SC disallows a=0;b6=0

a

0

a=1;b

1

0;b=

a

a=0;b=1
a=1b=0
a=1b=1
a=0;b=0

a = [y;
ifa=0
critical
section

b = [x;
ifb=0
critical
section

a=0;b=1
a=1b=0
a=1b=1
a=0;b=0

Dekker's lock

X =
=1
a = |y}
ifa=0
critical

section

b = [x;
if b=0
critical
section

a=0;b=1
a=1b=0
a=1b=1
a=0;b=0

Dekker's lock

a = [y;
ifa=0
critical
section

b = [x;
if b=0
critical
section

Does not work on GCC+x86!

a=0;b=1
a=1b=0
a=1b=1
a=0;b=0

Dekker's lock

a = [y;
ifa=0
critical
section

Does not work on GCC+x86!

b = [x;
ifb=0
critical
section

a=0;b=1
a=1b=0
a=1b=1
a=0;b=0

1. GCC may reorder instructions

2. x86 buffers writes

Dekker's lock

x] == 0;[y] := 0; a=0;b=1
A= Ll b= ST
mfence,; mfence,; :

a=0;b=0
a:= [|| b= [x;
ifa=0 ifb=0
critical critical
section section

Does not work on GCC+x86!

1. GCC may reorder instructions

2. x86 buffers writes

Dekker's lock

[x] =

K =1
mfence;
a = |y}
ifa=0
critical
section

0;ly] == 0;

M =1
mfence;
b = [x;
ifb=0
critical
section

Works on GCC+x86!

a=0;b=1
a=1b=0
a=1b=1
a=0;b=0

Non-SC behaviors called weak

Weak Memory Models allow weak behaviors

Real systems have weak MMs
(x86, Power, ARM, RISC-V, C/C++, Java)

Requirements to (Weak) Memory Models

Hardware MMs should [x86, Power, ARM, RISC-V]

Programming languages’ MMs should [C/C++, Java, JS, Wasm, OCaml]

Requirements to (Weak) Memory Models

Hardware MMs should [x86, Power, ARM, RISC-V]
1. describe real CPUs
2. save room for future optimizations
3. provide reasonable guarantees for PLs

Programming languages’ MMs should [C/C++, Java, JS, Wasm, OCaml]

Requirements to (Weak) Memory Models

Hardware MMs should [x86, Power, ARM, RISC-V]
1. describe real CPUs
2. save room for future optimizations
3. provide reasonable guarantees for PLs

Programming languages’ MMs should [C/C++, Java, JS, Wasm, OCaml]
1. support compiler optimizations
2. provide efficient compilation to hardware
3. have easy non-expert mode

Requirements to (Weak) Memory Models

Hardware MMs should [x86, Power, ARM, RISC-V]
1. describe real CPUs
2. save room for future optimizations
3. provide reasonable guarantees for PLs

Programming languages’ MMs should [C/C++, Java, JS, Wasm, OCaml]
1. support compiler optimizations
2. provide efficient compilation to hardware
3. have easy non-expert mode

Source

1. Compiler optimizations

X = 1;
a =y}

Source

1. Compiler optimizations

1. Compiler optimizations

X = 1; W =

Source (a — [y], b =
N a:= D[l V=
Optimized X = 1; b =

1. Compiler optimizations

Source

Optimized

X = 1;
a = s

V=1
b = [x;

Ul

2. Efficient compilation to hardware

Source MM (SC)

Target MM (x86)

x| = 1;
a = [y

[x] == 1;
mfence;
a = [y;

M =1
b= Ix;
M =1
mfence;

2. Efficient compilation to hardware

x| = 1;

Source MM (SC) Y
a = W

No compilation scheme w/o fences‘

M =1 || M =1

Target MM (x86) mfence; mfence;

a =D || b= X

3. Easy non-expert mode

Nice program =- nice behaviors

3. Easy non-expert mode

No data races = only SC behaviors

3. Easy non-expert mode

No data races in SC executions = only SC behaviors

3. Easy non-expert mode

Data-Race-Freedom guarantee:

No data races in SC executions = only SC behaviors

3. Easy non-expert mode

Data-Race-Freedom guarantee:

No data races in SC executions = only SC behaviors

a = [x;
if a then
v =

1

b = ly];
if b then
[x] =1

3. Easy non-expert mode

Data-Race-Freedom guarantee:

No data races in SC executions = only SC behaviors

a = [x;
if a then
b =

1

b = [y
if b then
[x] =1

C/C++ MM allows to get a= b =1

3. Easy non-expert mode

Data-Race-Freedom guarantee:

No data races in SC executions = only SC behaviors

o= || b=
if g then if b then
ly] =1 [x] =1

C/C++ MM allows to get a= b =1
a= b=1is Out-Of-Thin-Air outcome

Programming |

Comp. Op

anguages MM

Eff. Comp
to Hardware

DRF
(No OOTA

SC
Java MM
C/C++ MM

http://podkopaev.net

Programming languages’ MM

)
o o 5 <C
° &35
a Y s/ 30
E | T o
S |@mgl Z
SC ©
Java MM
C/C++ MM

http://podkopaev.net

wn
@)

Trace-preserving transformations
Reordering normal memory accesses
Redundant read after read elimination
Redundant read after write elimination
Irrelevant read elimination

Irrelevant read introduction

Redundant write before write elimination
Redundant write after read elimination
External action reordering

R U N N N N S NR IR

SC-preserving optimizations in LLVM [Marino et al., 2011]

Average slowdown:
» 34% w/ only SC preserving optimizations
» 5.5% w/ optimizations modified to preserve SC

SC-preserving optimizations in LLVM [Marino et al., 2011]

Average slowdown:
» 34% w/ only SC preserving optimizations
» 5.5% w/ optimizations modified to preserve SC

Drawbacks:

» Hardware still allows weak behaviors, i.e., no end-to-end SC

» Requires modifying existing compilers

Programming languages’ MM

~~

Eff. Comp
to Hardware
DRF
(No OOTA

o
@)
o
1S
o
@)
sC &)
Java MM @
C/C++ MM

http://podkopaev.net

Validity of transformations [Sevéik and Aspinall, 2008]

wn
@)

JMM*

Trace-preserving transformations
Reordering normal memory accesses
Redundant read after read elimination
Redundant read after write elimination
Irrelevant read elimination

Irrelevant read introduction

Redundant write before write elimination
Redundant write after read elimination
External action reordering

XN XS
X X N X NN > SN

Validity of transformations [Sevéik and Aspinall, 2008]

wn
@)

JMM*

Trace-preserving transformations
Reordering normal memory accesses
Redundant read after read elimination
Redundant read after write elimination
Irrelevant read elimination

Irrelevant read introduction

Redundant write before write elimination
Redundant write after read elimination
External action reordering

XN XS
> X N X NN Xx SN S

Programming languages’ MM

~~

Eff. Comp
to Hardware
DRF
(No OOTA

o
@)
o
1S
o
@)
sC &)
Java MM @
C/C++ MM

http://podkopaev.net

Programming languages’ MM

~~

(0]
o o 5 <C
l_
© 53 lso
a Y s/ 30
1S &I o
S |[mgo| Z
SC ©
Java MM @

C/C++ MM

http://podkopaev.net

Programming languages’ MM

~~

(O]
© <C
S|gs w5
g |V 5|30
E | T o
S |dgl Z
SC @
Java MM @

C/C++ MM

http://podkopaev.net

End-to-end SC via Volatile JVM [Liu et al., 2017, Liu et al., 2019]

Java MM guarantees Data-Race-Freedom:

Shared locations are volatile (no data races) = SC semantics

End-to-end SC via Volatile JVM [Liu et al., 2017, Liu et al., 2019]

Benchmarks
Slowdown, in % | DaCapo | spark-perf
x86 Average
Max
ARM (1) Average
Max

ARM (2) Average
Max

End-to-end SC via Volatile JVM [Liu et al., 2017, Liu et al., 2019]

Benchmarks
Slowdown, in % | DaCapo | spark-perf
x86 Average 28 79
Max 81 164
ARM (1) Average
Max

ARM (2) Average
Max

End-to-end SC via Volatile JVM [Liu et al., 2017, Liu et al., 2019]

Benchmarks

Slowdown, in % | DaCapo | spark-perf
x86 Average 28 79

Max 81 164
ARM (1) Average 57 85

Max 157 o0
ARM (2) Average

Max

End-to-end SC via Volatile JVM [Liu et al., 2017, Liu et al., 2019]

Benchmarks

Slowdown, in % | DaCapo | spark-perf
x86 Average 28 79
Max 81 164
ARM (1) Average 57 85
Max 157 o0
ARM (2) Average 73 125
Max 103 00

Programming languages’ MM

~~

(O]
© <C
S|gs w5
g |V 5|30
E | T o
S |dgl Z
SC @
Java MM @

C/C++ MM

http://podkopaev.net

Programming Ianguages MM
NI
S |Ee| 2
SC @
Java MM @ @
C/C++ MM DIRO)

http://podkopaev.net

Programming languages’ MM
5lez| E
¢ [OF|88
S |iigl =2
SC © D
Java MM @ @
C/C++ MM Ol

http://podkopaev.net

(VLOO ©oN)

44d @@
aiempiep 01
duoy 43 @O
Q0 1do .anU@@@

languages’ MM

d
o
IS
(@]
)
o=
L

Programmin

Java MM
C/C++ MM

SC

http://podkopaev.net

Programming languages’ MM

(VLOO ©N) =
44d @g@

siempieH o1

‘dwo) "3 e®©

gilele} .anU@@@

Java MM
C/C++ MM

SC

http://podkopaev.net

C/C++ MM allows to get a= b =1, OOTA

a = [x; b = [y
if a then if b then
M=t || W=

Executions in C/C++ MM

a = [x|; b = [y}
y =1 if b then

Executions in C/C++ MM

a = [x|; b = [y}
y =1 if b then

Rx0 Ry0

Wyl

Executions in C/C++ MM

a = [x|; b = [y}
y =1 if b then

//a=0;b=0
Rx0 Ry0

Wyl

Executions in C/C++ MM

a = [x; b = [y
y] =1 if b then
[x] =1
//a=0;b=0 /Ja=0;b=1
Rx0 RY0 Rx0 Ryl

po| po| % | po
Wyl Wyl wxl

Executions in C/C++ MM

a = [x; b = [y
y =1 if b then
[x] =1
//a=0;b=0 /ja=0;b=1 /ja=1b=1
Rx0 Ry0 RxO Ryl Rxl Ryl
po po| 2 lpo | w0] %0 |pe

Wyl Wyl wxl Wyl “wxl

Executions in C/C++ MM

a = [x; b = |y
y =1 if b then
[x] =1
/]a=0;b=0 /la=0;b=1 /Ja=1;b=1
RxX0 R)0 RxO Ryl Rxl Ryl
po po| 2 lpo | w0] %0 |pe
Wyl Wyl wxl Wyl “wxl

Axioms: 1. po U rf preserved 1S acyclic (rfpreserved <)
2. ...

Out-Of-Thin-Air in C/C++ MM

a = [¥
yp =1
a = [x;
if a then

v =1

b= [y}
if b then
[x =1

b= [y}
if b then
[x =1

Rxl1 Ryl
l‘21 l
Wyl Wxl
Rxl1 Ryl

l“l
fWXl

Out-Of-Thin-Air in C/C++ MM

a = [x;
if a then
] =1

b= [y}
if b then
[x =1

b= [y}
if b then
[x =1

Rx1 R yl

l l £ ctrl
Wyl " wxl

Rxl1 Ryl

ctrl 4 l ;} l ‘ ctrl
Wyl " wxl

£
W

Out-Of-Thin-Air in C/C++ MM

a = [x;
if a then
] =1

a = [x;
if a then

=1
else

=1

b= [y}
if b then
[x =1

b = [y
if b then
[x =1

b = [y}
if b then
[x =1

Rx1 R yl

l l g ctrl

Wyl x1
Rxl1 Ryl

ctrl 4 l ;} l ‘ ctrl
Wyl " wxl

rf
W

Out-Of-Thin-Air in C/C++ MM

a = [x;
if a then
] =1

a = [x;
if a then

=1
else

=1

b= [y}
if b then
[x =1

b = [y
if b then
[x =1

b = [y}
if b then
[x =1

Rxl Ryl

l ';‘; l ‘ ctrl
Wyl™ il

Rxl1 Ryl

ctrl 4 l ;} l ‘ ctrl
Wyl " wxl

Rxl Ryl

R w1 ‘e
ctrli l 'f‘f~ l K ctrl

Wyl " wxl

Out-Of-Thin-Air in C/C++ MM

a = [x;
if a then
] =1

a = [x;
if a then

=1
else

=1

b= [y}
if b then
[x =1

b = [y
if b then
[x =1

b = [y}
if b then
[x =1

Rxl Ryl

l ';‘; l ‘ ctrl
Wyl™ il

Rxl1 Ryl

ctrl 4 l ;} l ‘ ctrl
Wyl " wxl

Rxl Ryl
fake ctrli' l R}; l ‘_ ctrl
r -~
Wyl " wWxl

(V.LOO ©N)
430

OO

aJempleH 01

languages’ MM

d
o
IS
(@]
)
o=
L

DO

Q0 1dp dwo)

Programmin

OO

SC
Java MM
C/C++ MM

http://podkopaev.net

Programming languages’ MM

S 15848
a |O&|5S
€ | T o
S |iigl =2
sC © ©
Java MM OINORNO®)
C/C++ MM QO
RC11 OOlO

Forbids all po U rf cycles

http://podkopaev.net

Forbidding po U rf cycles

Enough to respect [R] ; po ; [W]

Forbidding po U rf cycles

Enough to respect [R] ; po ; [W]

______—————————————_————___
— —

Forbidding po U rf cycles
Enough to respect [R] ; po ; [W]

—— - ————————
— T —— ——
— ——
- —

Forbidding po U rf cycles

Enough to respect [R] ; po ; [W]

-
— T ——
Jp—
-
e

e
——
-
—

(poUrt \ po)*

Forbidding po U rf cycles

Enough to respect [R] ; po ; [W]

(poUrt \ po)*

—_-______.__——————_—————-_
-
-
e

Ll
—
-
—

Forbidding po U rf cycles

Enough to respect [R] ; po ; [W] since hardware respects rf \ po

(poUrt \ po)*

e e e e e
— T
- -
- -

Forbidding po U rf cycles

Enough to respect [R] ; po ; [W] since hardware respects rf \ po

(poUrf \ po)*
T -55\
“s‘\ /’

>W= === =>R: >W====>R"

po rf \ po po rf \ po

How?
1. Restrict compiler optimizations
2. Put a fence between R and W

Forbidding po U rf cycles

Enough to respect [R] ; po ; [W] since hardware respects rf \ po

(poUrf \ po)*
T T ~s
“s‘\ /’

W---->R >\i- - - - >R
po rf \ po po rf \ po

How?
1. Restrict compiler optimizations
2. Put a fence between R and W

Cheaper for C/C++ than for Javal!

C/C++ has undefined behavior

Undefined Behavior and Memory Models

[data] := 42;
A =1

while ([—==0) {}

print([data));

Undefined Behavior and Memory Models

int data = 0; int f=0;

while ([==0){};

print([data));

[data] := 42;
A =1

Undefined Behavior and Memory Models

int data = 0; int f=0;
[data] := 42;||while ([f] ==0){};
il =1 print([data));
Java: Fine, but may print 0

C/C++: Undefined Behavior! Race on normal location!

Undefined Behavior and Memory Models

int data=0; atomic< int > f=0;

while ([==0){};

print([data));

[data] := 42;
A =1

Undefined Behavior and Memory Models

int data=0; atomic< int > f=0;
[data] := 42;
[ﬂrel e 1’

while ([== 0) {};
print([data));

Undefined Behavior and Memory Models
int data=0; atomic< int > f=0;

[data] := 42;||while ([f]**? ==0) {};
[fet = 1; print([data));

Java MM | C/C++ MM

special locations | volatile int | atomic<int>
data race on int | weak guarantees | undefined behavior
access to int relaxed (rlx) access to atomic<int>

Undefined Behavior and Memory Models
int data=0; atomic< int > f=0;

[data] := 42;||while ([f]**4 ==0) {};
[fret = 1, print([data));

Java MM | C/C++ MM

special locations | volatile int | atomic<int>
data race on int | weak guarantees | undefined behavior
subject to OOTA | access to int relaxed (rlx) access to atomic<int>

Programming languages’ MM

S 15848
a |O&|5S
€ | T o
S |iigl =2
sC © ©
Java MM OINORNO®)
C/C++ MM QO
RC11 OOlO

Forbids all po U rf cycles

http://podkopaev.net

Programming languages’ MM

Eff. Comp
to Hardwar
DRF
(No OOTA)

SC
Java MM
C/C++ MM

RC11
Forbids all po U rf cycles

@@@@Comp. Opt
OGOGOEG) Nous

COLG
CBeGO

http://podkopaev.net

To forbid po U rf cycles in C/C++
enough to respect [R|; po; [W] on atomics

Preserving [R] ; po ; [W] for atomics in LLVM [Ou and Demsky, 2018]

Preserving [R] ; po ; [W] for atomics in LLVM [Ou and Demsky, 2018]

1. Restrict compiler optimizations:
2. Put a fence between R and W

Preserving [R] ; po ; [W] for atomics in LLVM [Ou and Demsky, 2018]

1. Restrict compiler optimizations: No changes for LLVM
2. Put a fence between R and W

Preserving [R] ; po ; [W] for atomics in LLVM [Ou and Demsky, 2018]

1. Restrict compiler optimizations: No changes for LLVM
2. Put a fence between R and W
» x86: no fences

Preserving [R] ; po ; [W] for atomics in LLVM [Ou and Demsky, 2018]

1. Restrict compiler optimizations: No changes for LLVM
2. Put a fence between R and W

» x86: no fences
» ARMvV8: bogus conditional branch for relaxed atomic reads

Preserving [R] ; po ; [W] for atomics in LLVM [Ou and Demsky, 2018]

1. Restrict compiler optimizations: No changes for LLVM
2. Put a fence between R and W

» x86: no fences
» ARMvV8: bogus conditional branch for relaxed atomic reads

Slowdown on ARMvS8 is 0% on average and 6.3% max

Preserving [R] ; po ; [W] is good if done
only for atomics

Preserving [R] ; po ; [W] is good if done
only for atomics

Anything suitable for ‘No UB" case
(i.e., Java)?

Out-Of-Thin-Air in C/C++ MM

a = [x;
if a then
] =1

a = [x;
if a then

=1
else

=1

b= [y}
if b then
[x =1

b = [y
if b then
[x =1

b = [y}
if b then
[x =1

Rxl Ryl

l ';‘; l ‘ ctrl
Wyl™ il

Rxl1 Ryl

ctrl 4 l ;} l ‘ ctrl
Wyl " wxl

Rxl Ryl
fake ctrli' l R}; l ‘_ ctrl
r -~
Wyl " wWxl

Preserving dependencies in LLVM [Ou and Demsky, 2018]

Modified 35/46 optimization passes, others turned off

Slowdown on ARMv8 is 3.1% on average and 17.6% max

Programming languages’ MM

Eff. Comp
to Hardwar
DRF
(No OOTA)

SC
Java MM
C/C++ MM

RC11
Forbids all po U rf cycles

@@@@Comp. Opt
OGOGOEG) Nous

COLG
CBeGO

http://podkopaev.net

Programming languages’ MM

v —
S|E5|uE |2
a |V & DQ: O | o
E | T o | 2

g |ma| =
SC @ @ @
Java MM @ @ @ @
C/CH+ MM Ol ©
RC11 @ @ @
Promising @ @ @ @
Weakestmo @ @ @
Modular Relaxed Dep. @ @ @

http://podkopaev.net

Programming languages’ MM

v —
S| ESuE |
a |V & DQ: O | o
E | T o | 2

g |ma| =
SC @ @ @
Java MM @ @ @ @
C/CH+ MM Ol ©
RC11 @ @ @
Promising @ @ @ @
Weakestmo @ @ @
Modular Relaxed Dep. @ @ @
OCaml MM @ @ @ @

http://podkopaev.net

Usual Data-Race-Freedom:

No data races = only SC behaviors

Usual Data-Race-Freedom:

No data races = only SC behaviors

No guarantees in case of irrelevant races!

Usual Data-Race-Freedom:
No data races = only SC behaviors
No guarantees in case of irrelevant races!

x| == a+10; || [x] == 1;

ly] == a+10;

Usual Data-Race-Freedom:

No data races = only SC behaviors

No guarantees in case of irrelevant races!

a+10; || [x] = 1;
t

W= a0 =1 T

t
4

ly] == a+10;

OCaml MM provides Local DRF

Usual Data-Race-Freedom:

No data races = only SC behaviors

No guarantees in case of irrelevant races!

[x] == a+10;

o t == a+10;
[X] T 1) [t

}

X| =

M = a+10;

W=t

[x] = 1; t := a+ 10;
=t

Programming languages’ MM

v —
S| ESuE |
a |V & DQ: O | o
E | T o | 2

g |ma| =
SC @ @ @
Java MM @ @ @ @
C/CH+ MM Ol ©
RC11 @ @ @
Promising @ @ @ @
Weakestmo @ @ @
Modular Relaxed Dep. @ @ @
OCaml MM @ @ @ @

http://podkopaev.net

<

Modular Relaxed Dep.

OCaml MM

Programming languages’ M

5 gg &g z | £
sc OO0 0@
Java MM GINOREONIO®)
C/CH+ MM Ol ©
RC11 OO
Promising @ @ @ @
Weakestmo @ @ @
O OO
OO0

http://podkopaev.net

Programming languages’ MM

SC @ @ @ @
Java MM @ @ @ @ @
C/C++ MM @ @ @
RC11 @ @ @ @
Promising @ @ @ @ @
Weakestmo @ @ @ @
Modular Relaxed Dep. @ @ @ @
OCaml MM @ @ @ @ @

http://podkopaev.net

To take away

Mainstream MM (SC, C/C++ MM and JMM) have major issues

Existing solutions make different compromises
» How much performance can you sacrifice?
» How complicated and new can your MM be?
» Can you have UB?
» What guarantees do you want to provide?

Programming |

anguages MM

—~~

SC @ @ @ @
Java MM @ @ @ @ @
C/C++ MM @ @ @
RC11 @ @ @ @
Promising @ @ @ @ @
Weakestmo @ @ @ @
Modular Relaxed Dep. @ @ @ @
OCaml MM @ @ @ @ @

http://podkopaev.net

Thank you!

http://podkopaev.net

) B W W & @

Links |

Batty, M., Owens, S., Sarkar, S., Sewell, P., and Weber, T. (2011).
Mathematizing C++ concurrency.
In POPL 2011, pages 55-66. ACM.

Chakraborty, S. and Vafeiadis, V. (2019).
Grounding thin-air reads with event structures.
In POPL 2019. ACM.

Dolan, S., Sivaramakrishnan, K., and Madhavapeddy, A. (2018).
Bounding data races in space and time.

In PLDI 2018.

Kang, J., Hur, C-K., Lahav, O., Vafeiadis, V., and Dreyer, D. (2017).
A promising semantics for relaxed-memory concurrency.

In POPL 2017. ACM.

Lahav, O., Vafeiadis, V., Kang, J., Hur, C.-K., and Dreyer, D. (2017).
Repairing sequential consistency in C/C++11.

In PLDI 2017. ACM.

Lamport, L. (1979).

How to make a multiprocessor computer that correctly executes multiprocess programs.

IEEE Trans. Computers, 28(9):690-691.

) B W W W

Links I

Lee, S.-H., Cho, M., Podkopaev, A., Chakraborty, S., Hur, C.-K., Lahav, O., and Vafeiadis, V. (2020).
Promising 2.0: Global optimizations in relaxed memory concurrency.

In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2020, page 362-376, New York, NY, USA. Association for Computing Machinery.

Liu, L., Millstein, T., and Musuvathi, M. (2017).

A volatile-by-default JVM for server applications.

In OOPSLA 2017.

Liu, L., Millstein, T., and Musuvathi, M. (2019).

Accelerating sequential consistency for Java with speculative compilation.
In PLDI 2019.

Manson, J., Pugh, W., and Adve, S. V. (2005).
The Java memory model.
In POPL 2005, pages 378-391. ACM.

Marino, D., Singh, A., Millstein, T., Musuvathi, M., and Narayanasamy, S. (2011).
A case for an SC-preserving compiler.
In PLDI 2011.

Ou, P. and Demsky, B. (2018).
Towards understanding the costs of avoiding Out-of-Thin-Air results.
In OOPSLA 2018.

Links Il

a Paviotti, M., Cooksey, S., Paradis, A., Wright, D., Owens, S., and Batty, M. (2020).
Modular relaxed dependencies in weak memory concurrency.
In ESOP 2020.

@ Sevcik, J. and Aspinall, D. (2008).
On validity of program transformations in the Java memory model.
In ECOOP 2008.

Backup slides

Bonus: HotSpot breaks JMM's DRF-SC for Power

volatile int x, y, z;

x=1; y=1|intb=y; // 1 z=2; intd=1z//1
inta=y;//0 z=1; intc=x;//0| inte=2 //2
Compilation schemes ‘ Alt. 1 ‘ Alt. 2
volatile write Iwsync; st; sync | lwsync; st
volatile read Id; Iwsync sync; Id; lwsync

https://hg.openjdk. java.net/ppc-aix-port/jdk8/hotspot/file/
ac7b3be2fdbb5/src/share/vm/opto/library_call.cpp#12633

https://hg.openjdk.java.net/ppc-aix-port/jdk8/hotspot/file/ac7b3be2fdb5/src/share/vm/opto/library_call.cpp#l2633
https://hg.openjdk.java.net/ppc-aix-port/jdk8/hotspot/file/ac7b3be2fdb5/src/share/vm/opto/library_call.cpp#l2633

Validity of transformations [Sevéik and Aspinall, 2008]

wn
@)

JMM*

Trace-preserving transformations
Reordering normal memory accesses
Redundant read after read elimination
Redundant read after write elimination
Irrelevant read elimination

Irrelevant read introduction

Redundant write before write elimination
Redundant write after read elimination
External action reordering

XN XS
> X N X NN Xx SN S

Compiler optimization invalidated in JMM [Sev¢ik and Aspinall, 2008]

x=y=20 x=y =20 x=y=20
rl=x r2=y . rl=x ril=y . rl=x x=1
y=ri x=(r2==1)7y:1 - y=rl x=1 y=ri r2=y
print r2 print r2 print r2

Fig. 5. Hotspot JVM'’s transformations violating the JMM.

OCaml MM to ARMv8 compilation scheme

Operation

Implementation

Nonatomic read
Nonatomic write
Atomic read
Atomic write

1dr R, [x]; cbz R, L; L:

str R, [x]

dmb 1d; ldar R, [x]

L: ldaxr; stlxr; cbnz L; dmb st

(a) Compilation scheme 1

Operation

Implementation

Nonatomic read
Nonatomic write
Atomic read
Atomic write

1ldr R, [x]

dmb 1d; str R, [x]

dmb 1d; ldar R, [x]

L: ldaxr; stlxr; cbnz L; dmb st

(b) Compilation scheme 2

Table 5. Compilation to ARMv8 (AArch64)

