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Programming language memory models:
Problems, Solutions, and Directions

Memory model defines behaviors
of concurrent system

Doesn'’t there exist The Memory Model?



How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs

LESLIE LAMPORT .




Sequential Consistency:
system’s behavior —
interleaving of threads













1



0

a=1;b

1

0;b=

a



1;b6=1

a

0

a=1;b

1

0;b=

a



1;b6=1

SC disallows a=0;b6=0

a

0

a=1;b

1

0;b=

a



a=0;b=1
a=1b=0
a=1b=1
a=0;b=0



a = [y;
ifa=0
critical
section

b = [x;
ifb=0
critical
section

a=0;b=1
a=1b=0
a=1b=1
a=0;b=0



Dekker's lock

X =
=1
a = |y}
ifa=0
critical

section

b = [x;
if b=0
critical
section

a=0;b=1
a=1b=0
a=1b=1
a=0;b=0



Dekker's lock

a = [y;
ifa=0
critical
section

b = [x;
if b=0
critical
section

Does not work on GCC+x86!

a=0;b=1
a=1b=0
a=1b=1
a=0;b=0



Dekker's lock

a = [y;
ifa=0
critical
section

Does not work on GCC+x86!

b = [x;
ifb=0
critical
section

a=0;b=1
a=1b=0
a=1b=1
a=0;b=0

1. GCC may reorder instructions

2. x86 buffers writes



Dekker's lock

x] == 0;[y] := 0; a=0;b=1
A= Ll b= ST
mfence,; mfence,; :

a=0;b=0
a:= [ || b= [x;
ifa=0 ifb=0
critical critical
section section

Does not work on GCC+x86!

1. GCC may reorder instructions

2. x86 buffers writes



Dekker's lock

[x] =

K =1
mfence;
a = |y}
ifa=0
critical
section

0;ly] == 0;

M =1
mfence;
b = [x;
ifb=0
critical
section

Works on GCC+x86!

a=0;b=1
a=1b=0
a=1b=1
a=0;b=0



Non-SC behaviors called weak

Weak Memory Models allow weak behaviors

Real systems have weak MMs
(x86, Power, ARM, RISC-V, C/C++, Java)
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2. Efficient compilation to hardware

Source MM (SC)

Target MM (x86)

x| = 1;
a = [y

[x] == 1;
mfence;
a = [y;

M =1
b= Ix;
M =1
mfence;



2. Efficient compilation to hardware

x| = 1;

Source MM (SC) Y
a = W

No compilation scheme w/o fences‘

M =1 || M =1

Target MM (x86) mfence; mfence;

a =D || b= X



3. Easy non-expert mode

Nice program =- nice behaviors
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3. Easy non-expert mode

Data-Race-Freedom guarantee:

No data races in SC executions = only SC behaviors

a = [x;
if a then
b =

1

b = [y
if b then
[x] =1

C/C++ MM allows to get a= b =1



3. Easy non-expert mode

Data-Race-Freedom guarantee:

No data races in SC executions = only SC behaviors

o= || b=
if g then if b then
ly] =1 [x] =1

C/C++ MM allows to get a= b =1
a= b=1is Out-Of-Thin-Air outcome
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SC-preserving optimizations in LLVM [Marino et al., 2011]

Average slowdown:
» 34% w/ only SC preserving optimizations
» 5.5% w/ optimizations modified to preserve SC



SC-preserving optimizations in LLVM [Marino et al., 2011]

Average slowdown:
» 34% w/ only SC preserving optimizations
» 5.5% w/ optimizations modified to preserve SC

Drawbacks:

» Hardware still allows weak behaviors, i.e., no end-to-end SC

» Requires modifying existing compilers



Programming languages’ MM

~~

Eff. Comp
to Hardware
DRF
(No OOTA

o
@)
o
1S
o
@)
sC &)
Java MM @
C/C++ MM



http://podkopaev.net

Validity of transformations [Sevéik and Aspinall, 2008]

wn
@)

JMM*

Trace-preserving transformations
Reordering normal memory accesses
Redundant read after read elimination
Redundant read after write elimination
Irrelevant read elimination

Irrelevant read introduction

Redundant write before write elimination
Redundant write after read elimination
External action reordering

XN XS
X X N X NN > SN




Validity of transformations [Sevéik and Aspinall, 2008]

wn
@)

JMM*

Trace-preserving transformations
Reordering normal memory accesses
Redundant read after read elimination
Redundant read after write elimination
Irrelevant read elimination

Irrelevant read introduction

Redundant write before write elimination
Redundant write after read elimination
External action reordering

XN XS
> X N X NN Xx SN S




Programming languages’ MM

~~

Eff. Comp
to Hardware
DRF
(No OOTA

o
@)
o
1S
o
@)
sC &)
Java MM @
C/C++ MM



http://podkopaev.net

Programming languages’ MM

~~

(0]
o o 5 <C
l_
© 53 lso
a Y s/ 30
1S &I o
S |[mgo| Z
SC ©
Java MM @

C/C++ MM


http://podkopaev.net

Programming languages’ MM

~~

(O]
© <C
S|gs w5
g |V 5|30
E | T o
S |dgl Z
SC @
Java MM @

C/C++ MM


http://podkopaev.net

End-to-end SC via Volatile JVM [Liu et al., 2017, Liu et al., 2019]

Java MM guarantees Data-Race-Freedom:

Shared locations are volatile (no data races) = SC semantics



End-to-end SC via Volatile JVM [Liu et al., 2017, Liu et al., 2019]

Benchmarks
Slowdown, in % | DaCapo | spark-perf
x86 Average
Max
ARM (1) Average
Max

ARM (2) Average
Max




End-to-end SC via Volatile JVM [Liu et al., 2017, Liu et al., 2019]

Benchmarks
Slowdown, in % | DaCapo | spark-perf
x86 Average 28 79
Max 81 164
ARM (1) Average
Max

ARM (2) Average
Max




End-to-end SC via Volatile JVM [Liu et al., 2017, Liu et al., 2019]

Benchmarks

Slowdown, in % | DaCapo | spark-perf
x86 Average 28 79

Max 81 164
ARM (1) Average 57 85

Max 157 o0
ARM (2) Average

Max




End-to-end SC via Volatile JVM [Liu et al., 2017, Liu et al., 2019]

Benchmarks

Slowdown, in % | DaCapo | spark-perf
x86 Average 28 79
Max 81 164
ARM (1) Average 57 85
Max 157 o0
ARM (2) Average 73 125
Max 103 00
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C/C++ MM allows to get a= b =1, OOTA

a = [x; b = [y
if a then if b then
M=t || W=




Executions in C/C++ MM

a = [x|; b = [y}
y =1 if b then
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Executions in C/C++ MM

a = [x; b = |y
y =1 if b then
[x] =1
/]a=0;b=0 /la=0;b=1 /Ja=1;b=1
RxX0 R)0 RxO Ryl Rxl Ryl
po po| 2 lpo | w0] %0 |pe
Wyl Wyl wxl Wyl “wxl

Axioms: 1. po U rf preserved 1S acyclic (rfpreserved < )
2. ...



Out-Of-Thin-Air in C/C++ MM
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Forbidding po U rf cycles

Enough to respect [R] ; po ; [W] since hardware respects rf \ po

(poUrf \ po)*
T T ~s
“s‘\ /’

W---->R >\i- - - - >R
po rf \ po po rf \ po

How?
1. Restrict compiler optimizations
2. Put a fence between R and W

Cheaper for C/C++ than for Javal!



C/C++ has undefined behavior



Undefined Behavior and Memory Models

[data] := 42;
A =1

while ([ —==0) {}

print([data));




Undefined Behavior and Memory Models

int data = 0; int f=0;

while ([ ==0){};

print([data));

[data] := 42;
A =1




Undefined Behavior and Memory Models

int data = 0; int f=0;
[data] := 42;||while ([f] ==0){};
il =1 print([data));
Java: Fine, but may print 0

C/C++: Undefined Behavior! Race on normal location!



Undefined Behavior and Memory Models

int data=0; atomic< int > f=0;

while ([ ==0){};

print([data));

[data] := 42;
A =1




Undefined Behavior and Memory Models

int data=0; atomic< int > f=0;
[data] := 42;
[ﬂrel e 1’

while ([ == 0) {};
print([data));




Undefined Behavior and Memory Models
int data=0; atomic< int > f=0;

[data] := 42;||while ([f]**? ==0) {};
[fet = 1; print([data));

Java MM | C/C++ MM

special locations | volatile int | atomic<int>
data race on int | weak guarantees | undefined behavior
access to int relaxed (rlx) access to atomic<int>



Undefined Behavior and Memory Models
int data=0; atomic< int > f=0;

[data] := 42;||while ([f]**4 ==0) {};
[fret = 1, print([data));

Java MM | C/C++ MM

special locations | volatile int | atomic<int>
data race on int | weak guarantees | undefined behavior
subject to OOTA | access to int relaxed (rlx) access to atomic<int>
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To forbid po U rf cycles in C/C++
enough to respect [R|; po; [W] on atomics



Preserving [R] ; po ; [W] for atomics in LLVM [Ou and Demsky, 2018]
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Preserving [R] ; po ; [W] for atomics in LLVM [Ou and Demsky, 2018]

1. Restrict compiler optimizations: No changes for LLVM
2. Put a fence between R and W

» x86: no fences
» ARMvV8: bogus conditional branch for relaxed atomic reads

Slowdown on ARMvS8 is 0% on average and 6.3% max



Preserving [R] ; po ; [W] is good if done
only for atomics



Preserving [R] ; po ; [W] is good if done
only for atomics

Anything suitable for ‘No UB" case
(i.e., Java)?



Out-Of-Thin-Air in C/C++ MM
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Preserving dependencies in LLVM [Ou and Demsky, 2018]

Modified 35/46 optimization passes, others turned off

Slowdown on ARMv8 is 3.1% on average and 17.6% max
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Usual Data-Race-Freedom:

No data races = only SC behaviors

No guarantees in case of irrelevant races!

a+10; || [x] = 1;
t

W= a0 =1 T

t
4

ly] == a+10;



OCaml MM provides Local DRF

Usual Data-Race-Freedom:

No data races = only SC behaviors

No guarantees in case of irrelevant races!

[x] == a+10;

o t == a+10;
[X] T 1) [ t

}

X| =

M = a+10;

W=t

[x] = 1; t := a+ 10;
=t
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To take away

Mainstream MM (SC, C/C++ MM and JMM) have major issues

Existing solutions make different compromises
» How much performance can you sacrifice?
» How complicated and new can your MM be?
» Can you have UB?
» What guarantees do you want to provide?
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Bonus: HotSpot breaks JMM's DRF-SC for Power

volatile int x, y, z;

x=1; y=1|intb=y; // 1 z=2; intd=1z//1
inta=y;//0 z=1; intc=x;//0| inte=2 //2
Compilation schemes ‘ Alt. 1 ‘ Alt. 2
volatile write Iwsync; st; sync | lwsync; st
volatile read Id; Iwsync sync; Id; lwsync

https://hg.openjdk. java.net/ppc-aix-port/jdk8/hotspot/file/
ac7b3be2fdbb5/src/share/vm/opto/library_call.cpp#12633


https://hg.openjdk.java.net/ppc-aix-port/jdk8/hotspot/file/ac7b3be2fdb5/src/share/vm/opto/library_call.cpp#l2633
https://hg.openjdk.java.net/ppc-aix-port/jdk8/hotspot/file/ac7b3be2fdb5/src/share/vm/opto/library_call.cpp#l2633

Validity of transformations [Sevéik and Aspinall, 2008]

wn
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JMM*

Trace-preserving transformations
Reordering normal memory accesses
Redundant read after read elimination
Redundant read after write elimination
Irrelevant read elimination

Irrelevant read introduction

Redundant write before write elimination
Redundant write after read elimination
External action reordering
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Compiler optimization invalidated in JMM [Sev¢ik and Aspinall, 2008]

x=y=20 x=y =20 x=y=20
rl=x r2=y . rl=x ril=y . rl=x x=1
y=ri x=(r2==1)7y:1 - y=rl x=1 y=ri r2=y
print r2 print r2 print r2

Fig. 5. Hotspot JVM'’s transformations violating the JMM.



OCaml MM to ARMv8 compilation scheme

Operation

Implementation

Nonatomic read
Nonatomic write
Atomic read
Atomic write

1dr R, [x]; cbz R, L; L:

str R, [x]

dmb 1d; ldar R, [x]

L: ldaxr; stlxr; cbnz L; dmb st

(a) Compilation scheme 1

Operation

Implementation

Nonatomic read
Nonatomic write
Atomic read
Atomic write

1ldr R, [x]

dmb 1d; str R, [x]

dmb 1d; ldar R, [x]

L: ldaxr; stlxr; cbnz L; dmb st

(b) Compilation scheme 2

Table 5. Compilation to ARMv8 (AArch64)



