
 

The Azul Systems’
Hardware Transactional Memory

Story

 

Cliff Click

 



Who Am I?

Cliff Click
Leader, Founder
Cratus, Rocket School, Neurensic, 
H2O.ai, Azul, Sun
cliffc@acm.org

45 yrs coding
40 yrs building compilers
35 yrs distributed computation
30 yrs OS, device drivers, HPC, HotSpot 
15 yrs Low-latency GC, custom java hardware,

  NonBlockingHashMap
10 yrs ML tool building, ML applications
20+ patents, dozens of papers
100s of public talks

PhD Computer Science
1995 Rice University
HotSpot JVM Server Compiler
“showed the world JITing is possible”



Spoiler: HTM doesn’t “work”

● Hardware Transactional Memory will not allow 
serious parallel execution of “junk Java code”

● For reasons that are obvious… in hindsight
● Can have good impact in “small library use-cases”

– Such as various kernel ops (eg context switch)
– Or very tight code (eg hi-freq trading netstack)

● Industry found other solutions to parallel workloads
– Clusters & Microservices vs Large Shared Memory

● This is a story about Azul Systems’ HTM effort



Some History of This Talk

● Azul Systems: Started ~2002
● Target: Big Business Java; portals, web servers
● Big Parallel Java

– Big Shared Memory coding style
● Perceived much easier than distributed coding

– Thread pools & worklists very common
– GC pauses a huge issue
– Irregular locking around e.g. caches

● Big Effort for Big Gain: Custom Hardware



Big Gains: Custom Hardware

● Big Core Count
– A core for every task, lambda, Runnable
– Cores dedicated to GC, JIT’ing and I/O

● Simple cores (but not too simple, e.g. GPUs)
– Classic 3-addr 64-bit RISC cores
– Small Caches, Low(er) Freq
– Read Barrier for Low-Latency GC
– Other custom ops to make up for low-frequency
– Hardware Transactional Memory to for Java Locks

● In 2002!  Intel Haswell has HTM a decade later



What Worked Well

● Irregular thread-parallel workloads
– “Parallel Worker Threads” doing unrelated tasks
– Handling e.g. web service requests

● Hardware was amazingly good at big web portals
● GC untouchable even 15 yrs later

– 40G/sec allocation on 1Tb live heap
– Max pause ~low milliseconds

● Read barrier op, inline-cache op, range-check op
● Built-in JVM profiling just catching up

– Still nothing on e.g. L1 cache profiling



Expected Use Case

● “Parallel Worker Threads” doing unrelated tasks
– Expect lots of locking & synchronization around 

shared infrastructure
– e.g. DB caches, Web caches

● Expect “useless” contention
– Locking for Readers against rare Writer
– But also readers blocking each other
– Difficult to debug, so “junk locks” added just-in-case

● Expect HTM to allow parallel execution thru locks



HashMap for Caches

● Poster Child use-case:
– Shared Large HashMap used as a Cache
– Mostly Reads
– Rare Writers updating Cache
– Readers blocked by Rare Writer
– Readers blocked by Each Other!

● HTM will allow parallel readers, writers
– As long as touching different parts of table

● Parallel access without lock-free computing



Java Locks

● Well accelerated in software already
● Three performance domains:

– No contention: CAS to lock/unlock
● Atomic Compare-And-Swap

– Light contention – spinning & retries
– Heavy contention: block in OS

● Late-in-life added 4th domain:
– No contention and frequently locked: Biased locking

● “Pre-lock”, difficult to release the lock but free to use



Java Locks

● Biased Locking: Azul ahead of Sun by a decade
● No contention: CAS to lock/unlock

– Azul CAS can “hit” in L1 cache
– Repeated un-contended locks take 3 clks to 

acquire & release (plus fencing costs)
– X86 gets there in ~2012

● Light contention – spinning & retries
● Heavy contention: block in OS

– Azul: fair locks in the OS
– Good support for 1000 cores & 100K runnable threads



Java Locks

● Biased Locking: Azul ahead of Sun by a decade
● No contention: CAS to lock/unlock

– Azul CAS can “hit” in L1
– Repeated un-contended locks take 3 clks to 

acquire & release (plus fencing costs)
– X86 gets there in ~2012

● Light contention – spinning & retries
● Heavy contention: block in OS

– Azul: fair locks in the OS
– Good support for 1000 cores & 100K runnable threads

HTM 
Targeted Here



HTM running A Java Lock in Parallel

● Hardware Transactional Memory
– Allows a set of memory ops to happen atomically
– In a transaction

● Two (or more) threads running in the same code
– But only reading memory
– Or writing unrelated memory addresses
– Can execute a transaction in parallel

● Use HTM to guard the transaction
– Will abort the XTN on a conflict



HTM in L1 D-Cache

● L1 is 16K: 512 lines of 32b each
– And 4-way associative

● L1 controls visibility to all other cores
– What’s in my L1 not visible to any other core
– Except when L1 evicts a dirty line

● Store transaction updates in your  L1
– If aborted: invalidate dirty lines instead writing back
– If success: show dirty lines as-needed
– Needs 1 extra bit-per-line for in/out of XTN



HTM in L1 D-Cache

● In theory XTNs as large as 16K
– Limited by 4-way associativity

● Mark touched lines with XTN bit
– As long as hardware does not “lose a XTN line”
– Then known to be atomic!

● Java lock/unlock uses HTM
– Uncontended locks use CAS (or biased locking)
– Heavy contention blocks in OS
– Everybody else: try the HTM first



HTM’ing a Lock

● Attempt acquire w/CAS
● CAS fails
● Inspect for inflated lock header

– Install inflated lock as needed
● Inspect inflated lock for contention / HTM fails

– Heuristic: bail to OS for blocking
● Bump counters in inflated lock
● Turn on HTM – 

– And now every touched line is XTN marked



HTM’ing a Lock

● Run Java code until
– Hit Unlock or L1 attempts to throw out XTN line

● Unlock: “commit” HTM, turn off special marking
– Update counters in inflated lock
– Carry-on!  Lock worked, was atomic

● Lose-A-Line: Abort!
– Hardware throws interrupt instead of writing line out
– All dirty & marked lines are marked Invalid
– No write-back of dirty
– Software retry – might CAS, spin, block or HTM



Example!

● Shared synchronized HashMap
– Some active readers
– Writer writes to unrelated part of table
– Want everybody to run concurrently

● HashMap data layout for 64b JVM:

HashMap

HashMap
.table

map+ 0 mark klass table

entrySet

pad

map+32

table+ 0 mark klass len [0]

table+32 [1] [2] [3] [4]

entry+ 0 mark klass ValueKey

sizemod

ldF pad

Map.Entry next



Example!

● Every thread does:
– synchronize / Java lock bytecode
– Loads map, map.table & table.length
– Calls key.hashCode() & mod/mask to table.length
– Index into table[hash], Load Entry
– Compare Entry.Key; Read or Write value
– Java unlock bytecode



Example!

● Lock is flagged for HTM
● T1 (reader) starts into HashMap

– Starts a XTN

– Meanwhile…
● T2 (writer) also starts into HashMap

map+ 0
HTM
mark

klass table

entrySetmap+32

sizemod

ldF pad

padtable+ 0 mark klass len [0]

table+32 [1] [2] [3] [4]

entry+ 0 mark klass ValueKey next



Real Chips Are Complicated

CPU #1

Registers

------: - - - - I
tab+00: M K L 0 S
------: - - - - I
tab+64: 5 6 7 8 S

LD/ST Unit

Compute

CPU #2

Registers

LD/ST Unit

Compute

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

MESI

Memory Controller

CPUs

Caches

RAM

------: - - - - I
tab+00: M K L 0 S
tab+32: 1 2 3 4 S
------: - - - - I



Real Chips Are Complicated

CPU #1

Registers

LD/ST Unit

Compute

CPU #2

Registers

LD/ST Unit

Compute

Memory Controller

CPUs

Caches

RAM

Complex reality: 
Many cache levels
Each layer is 10x bigger
And 10x slower

RAM is itself complex: 
“Best effort” throughput
Not FIFO!

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

------: - - - - I
tab+00: M K L 0 S
------: - - - - I
tab+64: 5 6 7 8 S MESI

------: - - - - I
tab+00: M K L 0 S
tab+32: 1 2 3 4 S
------: - - - - I

Complex protocol:
   Modified
   Exclusive
   Shared
   Invalid

Data is replicated
No single “home”



Real Chips Are Complicated

CPU #1

rax?

LD/ST Unit

Compute

CPU #2

rax?

LD/ST Unit

Compute

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

ld rMark,map+0
beq rMark,use_HTM

?map+0 ?map+0ld rMark,map+0
beq rMark,use_HTM

------: - - - - I
tab+00: M K L 0 S
------: - - - - I
tab+64: 5 6 7 8 S

------: - - - - I
tab+00: M K L 0 S
tab+32: 1 2 3 4 S
------: - - - - I



Real Chips Are Complicated

CPU #1

rax?

LD/ST Unit

Compute

CPU #2

rax?

LD/ST Unit

Compute

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

?map+0 ?map+0

?map+0 ?map+0

ld rMark,map+0
beq rMark,use_HTM

ld rMark,map+0
beq rMark,use_HTM

------: - - - - I
tab+00: M K L 0 S
------: - - - - I
tab+64: 5 6 7 8 S

------: - - - - I
tab+00: M K L 0 S
tab+32: 1 2 3 4 S
------: - - - - I

-map

-map



Real Chips Are Complicated

CPU #1

rax?

LD/ST Unit

Compute

CPU #2

rax?

LD/ST Unit

Compute

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

?map+0 ?map+0

ld rMark,map+0
beq rMark,use_HTM

ld rMark,map+0
beq rMark,use_HTM

map+00: M K T Z S
tab+00: M K L 0 S
------: - - - - I
tab+64: 5 6 7 8 S

map+00: M K T Z S
tab+00: M K L 0 S
tab+32: 1 2 3 4 S
------: - - - - I



Real Chips Are Complicated

CPU #1

rax:htm?

LD/ST Unit

Compute

CPU #2

rax:htm?

LD/ST Unit

Compute

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

?map+0 ?map+0

ld rMark,map+0
beq rMark,use_HTM

ld rMark,map+0
beq rMark,use_HTM

map+00: M K T Z S
tab+00: M K L 0 S
------: - - - - I
tab+64: 5 6 7 8 S

map+00: M K T Z S
tab+00: M K L 0 S
tab+32: 1 2 3 4 S
------: - - - - I



Real Chips Are Complicated

CPU #1

XTN!

LD/ST Unit

Compute

CPU #2

XTN!

LD/ST Unit

Compute

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

XTN! XTN!

ld rMark,map+0
beq rMark,use_HTM
...
XTN!

ld rMark,map+0
beq rMark,use_HTM
...
XTN!

map+00: M K T Z S
tab+00: M K L 0 S
------: - - - - I
tab+64: 5 6 7 8 S

map+00: M K T Z S
tab+00: M K L 0 S
tab+32: 1 2 3 4 S
------: - - - - I



Real Chips Are Complicated

CPU #1

rax

LD/ST Unit

Compute

CPU #2

rax

LD/ST Unit

Compute

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

map+00: M K T Z SX
tab+00: M K L 0 S
------: - - - - I
tab+64: 5 6 7 8 S

map+00: M K T Z SX
tab+00: M K L 0 S
tab+32: 1 2 3 4 S
------: - - - - I

?map+0 ?map+0

ld rMark,map+0

ld rMark,map+0



Real Chips Are Complicated

CPU #1

rax:htm

LD/ST Unit

Compute

CPU #2

rax:htm

LD/ST Unit

Compute

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

map+00: M K T Z SX
tab+00: M K L 0 S
------: - - - - I
tab+64: 5 6 7 8 S

map+00: M K T Z SX
tab+00: M K L 0 S
tab+32: 1 2 3 4 S
------: - - - - I

?key1+0 ?key2+0!map+0 !map+0

-map

-map

ld rMark,map+0
ld rHash,key1.hash

ld rMark,map+0
ld rHash,key2.hash



Real Chips Are Complicated

CPU #1

rbx:hash

LD/ST Unit

Compute

CPU #2

rax:hash

LD/ST Unit

Compute

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

map+00: M K T Z SX
tab+00: M K L 0 S
------: - - - - I
tab+64: 5 6 7 8 S

map+00: M K T Z SX
tab+00: M K L 0 S
tab+32: 1 2 3 4 S
------: - - - - I

?map+16 ?map+16!key1+0 !key2+0

-key1

-key2

ld rMark,map+0
ld rHash,key1.hash
ld rTab,map+16

ld rMark,map+0
ld rHash,key2.hash
ld rTab,map+16



Real Chips Are Complicated

CPU #1

rcx:table

LD/ST Unit

Compute

CPU #2

rcx:table

LD/ST Unit

Compute

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

map+00: M K T Z SX
tab+00: M K L 0 SX
------: - - - - I
tab+64: 5 6 7 8 S

map+00: M K T Z SX
tab+00: M K L 0 SX
tab+32: 1 2 3 4 S
------: - - - - I

!map+16 !map+16

ld rMark,map+0
ld rHash,key1.hash
ld rTab,map+16
ld rLen,rTab+16

ld rMark,map+0
ld rHash,key2.hash
ld rTab,map+16
ld rLen,rTab+16



Real Chips Are Complicated

CPU #1

rdx:length

LD/ST Unit

Compute

CPU #2

rdx:length

LD/ST Unit

Compute

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

map+00: M K T Z SX
tab+00: M K L 0 SX
------: - - - - I
tab+64: 5 6 7 8 S

map+00: M K T Z SX
tab+00: M K L 0 SX
tab+32: 1 2 3 4 S
------: - - - - I

?tab+16 ?tab+16

-tab

-tab

ld rMark,map+0
ld rHash,key1.hash
ld rTab,map+16
ld rLen,rTab+16

ld rMark,map+0
ld rHash,key2.hash
ld rTab,map+16
ld rLen,rTab+16



Real Chips Are Complicated

CPU #1

rdx:length

LD/ST Unit

Compute

CPU #2

rdx:length

LD/ST Unit

Compute

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

ld rMark,map+0
ld rHash,key1.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen 

ld rMark,map+0
ld rHash,key2.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen

map+00: M K T Z SX
tab+00: M K L 0 SX
------: - - - - I
tab+64: 5 6 7 8 S

map+00: M K T Z SX
tab+00: M K L 0 SX
tab+32: 1 2 3 4 S
------: - - - - I

!tab+16 !tab+16



Real Chips Are Complicated

CPU #1

rbx:index

LD/ST Unit

mod rdx

CPU #2

rbx:index

LD/ST Unit

mod rdx

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

ld rMark,map+0
ld rHash,key1.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen 

ld rMark,map+0
ld rHash,key2.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen

map+00: M K T Z SX
tab+00: M K L 0 SX
------: - - - - I
tab+64: 5 6 7 8 S

map+00: M K T Z SX
tab+00: M K L 0 SX
tab+32: 1 2 3 4 S
------: - - - - I



Real Chips Are Complicated

CPU #1

rex:entry

LD/ST Unit

rcx+rbx*8

CPU #2

rex:entry

LD/ST Unit

rcx+rbx*8

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

ld rMark,map+0
ld rHash,key1.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen 
ld rEntry,rTab[rHash]

ld rMark,map+0
ld rHash,key2.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen
ld rEntry.rTab[rHash]

map+00: M K T Z SX
tab+00: M K L 0 SX
------: - - - - I
tab+64: 5 6 7 8 SX

map+00: M K T Z SX
tab+00: M K L 0 SX
tab+32: 1 2 3 4 SX
------: - - - - I

?tab+64 ?tab+32

-tab+64

-tab+32



Real Chips Are Complicated

CPU #1

rfx:key1

LD/ST Unit

CPU #2

rfx:key2

LD/ST Unit

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

ld rMark,map+0
ld rHash,key1.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen 
ld rEntry,rTab[rHash]
ld rKey,rEntry.key

ld rMark,map+0
ld rHash,key2.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen
ld rEntry.rTab[rHash]
ld rKey,rEntry.key

map+00: M K T Z SX
tab+00: M K L 0 SX
------: - - - - I
tab+64: 5 6 7 8 SX

map+00: M K T Z SX
tab+00: M K L 0 SX
tab+32: 1 2 3 4 SX
------: - - - - I

!tab+64 !tab+32



Real Chips Are Complicated

CPU #1

rfx:key1

LD/ST Unit

CPU #2

rfx:key2

LD/ST Unit

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

ld rMark,map+0
ld rHash,key1.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen 
ld rEntry,rTab[rHash]
ld rKey,rEntry.key

ld rMark,map+0
ld rHash,key2.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen
ld rEntry.rTab[rHash]
ld rKey,rEntry.key

map+00: M K T Z SX
tab+00: M K L 0 SX
en1+00: M K K V SX
tab+64: 5 6 7 8 SX

map+00: M K T Z SX
tab+00: M K L 0 SX
tab+32: 1 2 3 4 SX
en2+00: M K K V SX

?entry1+0 ?entry2+0

-entry1

-entry2



Real Chips Are Complicated

CPU #1

rfx:key1

LD/ST Unit

cmp key1

CPU #2

rfx:key2

LD/ST Unit

cmp key2

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

ld rMark,map+0
ld rHash,key1.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen 
ld rEntry,rTab[rHash]
ld rKey,rEntry.key
bne rKey,key1,reprobe

ld rMark,map+0
ld rHash,key2.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen
ld rEntry.rTab[rHash]
ld rKey,rEntry.key
bne rKey,key2,reprobe

map+00: M K T Z SX
tab+00: M K L 0 SX
en1+00: M K K V SX
tab+64: 5 6 7 8 SX

map+00: M K T Z SX
tab+00: M K L 0 SX
tab+32: 1 2 3 4 SX
en2+00: M K K V SX

!entry1+0 !entry2+0



Real Chips Are Complicated

CPU #1

rfx:key1

LD/ST Unit

cmp key1

CPU #2

rfx:key2

LD/ST Unit

cmp key2

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

ld rMark,map+0
ld rHash,key1.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen 
ld rEntry,rTab[rHash]
ld rKey,rEntry.key
bne rKey,key1,reprobe
ld rVal,rEntry.val

ld rMark,map+0
ld rHash,key2.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen
ld rEntry.rTab[rHash]
ld rKey,rEntry.key
bne rKey,key2,reprobe
st rVal,rEntry.val

map+00: M K T Z SX
tab+00: M K L 0 SX
en1+00: M K K V SX
tab+64: 5 6 7 8 SX

map+00: M K T Z SX
tab+00: M K L 0 SX
tab+32: 1 2 3 4 SX
en2+00: M K K V’MX

?entry1+0 !entry2+0,val’

-entry1

!entry2



Real Chips Are Complicated

CPU #1

rgx:val1

LD/ST Unit

CPU #2

LD/ST Unit

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

ld rMark,map+0
ld rHash,key1.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen 
ld rEntry,rTab[rHash]
ld rKey,rEntry.key
bne rKey,key1,reprobe
ld rVal,rEntry.val
XTN commit

ld rMark,map+0
ld rHash,key2.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen
ld rEntry.rTab[rHash]
ld rKey,rEntry.key
bne rKey,key2,reprobe
st rVal,rEntry.val
XTN commit

map+00: M K T Z SX
tab+00: M K L 0 SX
en1+00: M K K V SX
tab+64: 5 6 7 8 SX

map+00: M K T Z SX
tab+00: M K L 0 SX
tab+32: 1 2 3 4 SX
en2+00: M K K V’MX

!entry1+0



Real Chips Are Complicated

CPU #1

LD/ST Unit

CPU #2

LD/ST Unit

map+00: M K T Z   map+32: E L - - 
tab+00: M K L 0   tab+32: 1 2 3 4
tab+64: 5 6 7 8   tab+96: 9....

Memory Controller

ld rMark,map+0
ld rHash,key1.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen 
ld rEntry,rTab[rHash]
ld rKey,rEntry.key
bne rKey,key1,reprobe
ld rVal,rEntry.val
XTN commit

ld rMark,map+0
ld rHash,key2.hash
ld rTab,map+16
ld rLen,rTab+16
mod rHash,rLen
ld rEntry.rTab[rHash]
ld rKey,rEntry.key
bne rKey,key2,reprobe
st rVal,rEntry.val
XTN commit

map+00: M K T Z S
tab+00: M K L 0 S
en1+00: M K K V S
tab+64: 5 6 7 8 S

map+00: M K T Z S
tab+00: M K L 0 S
tab+32: 1 2 3 4 S
en2+00: M K K V’M



Example Is Too Simple

● Showing: 4 cache lines, 6 lds, +1 ld/st
● More if Key.hashCode() needs to be computed
● More if Key.equals() is a v-call
● More if need to reprobe, even a little
● More to touch modcount & check CME
● More to check load factor vs size

– Many many more if resize…
● Typical successful read-only HashMap is ~15-

20 lines – not loads.  Can be lots more!



Lesson: HTM needs many lines!

● Handling a small count of lines is not enough
– At least for generic Java code
– Dozen probably fine for tiny hand-crafted cases
– Or for very carefully crafted Java cases

● But you still touch way more lines 
than it looks like

● Map, table, Entry, Key, Value plus their vtables, 
plus some reprobes & extra Entry, Keys, plus 
whats needed to run key-compare, plus stack 
footprint, plus...



But HTM Fails for True Contention

● Two threads touch same cache line
and at least one writes
– False Sharing: contention on modCount: 

– Even if all Readers plus only one Writer
● And Writer in unrelated part of table

– At least one aborts (generally 1st one)
● Its not just HashMap: Other utilities often have 

“perf counters” or “mod counter”.  
– e.g. used to detect CME

● Means a single Writer aborts all Readers



Not Just Fails Once...

● Lock was busy & contended
– Else was using CAS + spin-locks
– Hence LOTS of Readers and a rare Writer

● Writer aborts, retries...
● But always another Reader before Write commits
● And Write aborts all Readers also…
● So rapidly becomes live-lock

...and must bail out to an OS blocking lock



HTM Fails for True Contention

● Frequently fails on “Poster Child” case
● But also: Failed to get True Parallelism
● Biz Model: Must be 5x faster than X86

– Need at least 4 working threads to equal 1 X86…
– So really need ~20 active working threads where 

X86 needs only 1
– Need applications to scale by 20x

● Applications Failed-to-Scale
● Main reason: no “big scale” thinking in code



Fail-To-Scale

● Industry trying to figure out Scaling Model
– Micro-services in infancy, one of many approaches
– Azul tried Big Parallel Shared Memory
– General Nativity on what would work

● Turns out: You Need Discipline to Scale
– And that Discipline works for distributed memory 

same as shared memory
● Must manage communication

– Either via “synchronized” or SaaS / tcp-socket
– And then do not need big shared-memory machine



Slow Processors

● Ultimately too hard to get 4x threads going
– Needed to match 1 X86

● Industry pivoted to clusters (e.g. Hadoop) with 
various streaming models

● Cheaper to organically grow cluster
– Understandable coding model “in the small”
– Still see all kinds of problems “in the large!”
– But cheap hardware to experiment on
– Incremental perf bug fixes work

● Clusters of cheap distributed X86s win the day



Summary

● $250M spent
● Max ~850core machine

– Roughly equal to 100 X86’s but shared memory
● Lots of fun custom hardware
● HTM: Very aggressive: All of L1
● HTM fails for “stupid” reasons

– But would require major software rewrite to use
– Which defeated the purpose

● Azul lives on selling low-latency GC on X86s



 

Q&A

 

Cliff Click
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