@)
VALIDATION <~ =

0 CODE ANMEIZERS

% system programming

&

@@

ABOUT il e}

Andrey Kuleshov

https://github.com/akuleshov?

Deutsche Bank H UAWE'

B save-cli | Public

Universal test framework for cli tools [mainly for code analyzers and

compilers]

@Kotlin v¥33 Y4

B save-cloud | Public

Cluster-based cloud mechanism for running SAVE framework

@Kotin Y¥29 %1

DISCLAIMER:

No testing «philosophy»

No marketing

Only personal experience

And some open-source projects

e
»©@ SCOPEOF THIS TALK

System programming tools
Compilers, code analyzers

A lot about existing benchmarks
Functional testing (90%)

The price of the mistake of
system programming tools is extremely high

" Youwont make mistake

g1 vou do NOTHING

7 ;

@ PROBLEM
MOTIVATION OF “SEVE” @

Lo

Lok

Let's start from the origins...

¢

HOW THESE TOOLS %@
USUALLY WORK

[Text output }

rce code } >Z> [compiler/code analyzer/etc.} >Z>

Execution [Resulted file }

Parsing, transpilation, etc

JUST AN EXAMPLE

@ @ https://qithub.com/saveourtool/diktat

Test.kt:1:1: [HEADER_MISSING]
Test.kt: Test.kt:1:1: [PACKAGE_NAME_MISSING]

Test.kt:2:1: [WRONG_INDENTATION]

fun main() { S ./ktlint -R diktat.jar -F Test.kt Test.kt:2:5: [DEBUG_PRINT]
println("Hello world") >§> S ./ktlint -R diktat.jar Test.kt >§>
}

package com.huawei.test

fun main() {
println("Hello world")
}

COMPILER’S EXAMPLE

https://clang.llvm.org/

5 O

test.c:

#include <stdio.h>

int main(int argc, char *xargv) {
printf("hello world\n");

}

27

S clang test.c
S ./a.out

S clang -fsyntax-only test.c

S clang test.c -S -emit-llvm -o -

DY

test.c:2:17:

hello world

define i32 @main(i32 %0, i8** %1) #0 {
%3 = alloca i32, align 4
%4 = alloca i8**, align 8

©
S

So we need a very simple, but universal cli-framework.
What else?

- BENCHMARKS AND COMPARISON
o

Diff line / Loc
e »© e o o @
N w » w an ~

o
[N

0 I

diktat ktlint ktfmt detekt
M ioshed okhttp RxKotlin

A figure from our paper for ISSRE conference
comparing opensource code fixers for Kotlin

A Comparison of Static Analysis Tools for Vulnerability Detection in C/C++ Code

logic!
4 Techn®
tems a0
gion, SY
+ry Inform®
- g Security
. i 5 A st : i
Andrei Arusoaie*, Stefan Ciobaci*, Vlad Criciun*!, Dragos Gavrilut!, Dorel Lucanu* fexence O Broergit®
l)},'o é . *Faculty of Computer Science, Alexandru Ioan Cuza University, lasi d‘“wmaﬁooa\ Cont
'z,]2 & Email: arusoaie.andrei,stefan.ciobaca,dorel.lucanu®* = 2009 Thir
4 c, g Z}Z (o))'ABitdefender, Ia;f' a\yS'lS Too!
C ”qu”lk' o A Email: veraciun,dgavrilut@bitde Gic Cod An
On {tath
Cts, 7} rison £S
Dey,. Ri “Crory, Vsis p, Comp? vusielo
a
d. Pty ogassba“ka 1 ol “ati C, OOZJ' me1d‘ 4 Manter® tre Finlan
Ashy, 0; O, s at! y
by, Hattogs rare E;I:i;oob" Shap de Yray, rp Techmicel B0y gy, Fim
Soure c;t;a\%e" 8majy, cony? Rawee"”& Far 00,2 . v Ka',nov'a}’\a ame @Vt
u:d' 'g "an: ang tb:e 3 g, » rogp, sbalpindi ~ e Jin 192 U incusaviiey uguesing aud by owin vaics 100 eviz) susmu et oup
0 2 , y : it .
The me“”'llm;,rm The ::5" e tatv::l:" SVten, oo @ e EProg\'ammmg ¥
. i steny (.) . B T ey
ang g Jor p, € the o dely.yg, Mhich ;" o1 lies ; Contents lists available at ScienceDirect Secw Finlan
d fop,,. 0 ¢ o, ¥V
the '€ Pote,,,. POse ;o 08Ta Coge low, € Quap: of Oulv,
Coq, Ntjgy 'S th, S Wigp, angyp,.. 'S th aljgy, &y fi
mg;, 2% T, def,. 1€ de, oy, lysis up, oL - 5 . o
,IZZ'enaHCe':e Code :,f“ ’ba,,:" tioy ':ctua”y ;&bmq,le:;lying With Reliability Engineering and System Safety) aing @O
er Os¢ Mpe, . SUlt j, Om, Xec, foc, C
Teseq,. . %fcog, . 20d xigy ;' M the Pley ua,,g u, Omeg .
bry cheg 0d€ ang, '€ad ¢ Y Is o "€ decr,, 0de o) 8 them, efg,. > U ; . : appl
bel:ng do Wsn re be,:l Zing to:;he Uney, ten S5y, ent i co""'"lcts 1011‘:11,-;J journal homepage: www.elsevier.com/locate/ress = Juable esourc §_‘SC
presa"lou,.. Softyy eg Coadu(,t:‘:re a,,a‘;;l‘; yys':d £ in?):t]' * hag val s paper o analyss
enteg . X brj, o, to ;. 2ble " p, I’ Issy, ., source €©
togyg . °d ip Tef po . MPlexj. 0 i an, hay;, © the es ng SOV consit
th is e 1ty 'pro Cury, ouy. S0, €a poratd . W
ro at P L With, Ve engy -4 s v _ ols.
s.,,,':"d ”'fgz,""l”e t: er; how: the %';':t ”Tecf, W are ;J'ma,,y Ieab.z:;g deg Benchmarking static code analyzers)]f_!’el " opme““ domonstral®
ce S er in g g, 1al, Wi at Crecter s 100 ith i
th, cod hayg ;. SOur, th g its ligy, by s o . is 10 wil
a"l:;,-a ten IZ:,;E" Codzlde" :; ;;’de Werl:;"’ or ;::_de illlalyezxt"rnal ""Itblie L Jorg Herter"®, Daniel Késtner®, Christoph Mallon®, Reinhard Wilhelm” - ased {ration ‘|’ £ €
s b e o entn
lic«'itig,, in 0 ¢pe ,',:n ells, “Odeat the Pof: in C; s Is up‘,:r:hls Py Zin; C * Absint GmbH, Science Park 1, Saarbriicken D-66123, Germany :as,ﬂ-. -
e Teag, . © Clo, Ntjg, es, e an, to, *® Saarland University, Saarland Informatics Campus, Saarbriicken, Germany -
SVstep, € in Xy":;;‘, a"”-d: fr"blen:afchers Pre, Sfe, ed 0f¢
M o, ect ing, £
4, 'llp[exl. Patge,, - Ule aj], ers £
ly a, 1 ef, de th, To, ARTICLE INFO ABSTRACT
e ng p Clc letocy; Aat g,
le enc, ln, e o
a""lyzi,, : Oﬁw 8 the Orig;, Keywords: We show that a widely used benchmark set for the comparison of static”=analysis tools exhibits an impressive
mallztain .DeVSIO Static code analysis number of and that the i i accepted i metrics may lead to
abl]ity ’p zou;;i semantic analysis useless results. The weaknesses in the benchmark set were identified by applying a sound static analysis to the
. code programs in this set and carefully interpreting the results. We propose how to deal with weaknesses of the
i:fz;:{““ff‘; e quantitative metrics and how to improve such benchmarks and the evaluation process, in particular for external

Test case design
Abstract interpretation
Functional safety
Tool evaluation

evaluations, in which an ideally neutral institution does the evaluation, whose results potential clients can trust.
We also show that sufficiently high quality of the test cases makes an automatic result evaluation possible.

1. Introduction

best fitting tool is a challenging task. The first problem is that the term
static analysis is used for a wide range of techniques that are con-

In the past, static analysis most of the time meant manual review of
programs. ic static”=analysis tools have gained
popularity in software development as they offer a tremendous increase
in productivity by automatically checking the code under a wide range
of criteria. Many software D projects are ac-
cording to coding guidelines, such as MISRA C, aiming at a program-
ming style that improves clarity and reduces the risk of introducing

CR Y S-S S0 N S YN, . f

ceptually very different. They all have in common that they compute
their results just from the program code, without actually executing the
program under analysis. They can be categorized in three main groups:

Syntax checkers They are limited to investigating the
program syntax. Most of the algor-
ithmically checkable MISRA C rules can

- - Y ST V-

&) A% cOt-
i < of 1n¢
enefits © A-
ssxb\e‘ goftw dev’:\y
t:;ff rent S - on-
aly s'm%o These
248 -
med’ Foan T

,,,,,,,,

So we need a bunch of benchmarks, standards and
test suites

350,000+

This is how many functional tests are there in GCC. LLVM and Clang
have mostly same huge test packages. Industrial compilers, like ICC,
can have 1 min+ tests

So we need some elastic Cl platform that can easily
make distributed testing in parallel and will be
optimized for it

A BUNCH OF METRICS

Definition (classification context) [edit]

For classification tasks, the terms true positives, true negatives, false positives, and false negatives (see Type | and type Il errors for definitions) compare the results of the classifier under test with trusted external judgments. The terms positive
and negative refer to the classifier's prediction (sometimes known as the expectation), and the terms true and false refer to whether that prediction corresponds to the external judgment (sometimes known as the observation).

Let us define an experiment from P positive instances and N negative instances for some condition. The four outcomes can be formulated in a 2x2 contingency table or confusion matrix, as follows:

Predicted condition

Total population

Positive (PP Negative (PN;
e (PP) eg: (PN)
False negative (FN),
5 e True positive (TP), 9 N
= Positive (P) o type Il error, miss,
E underestimation
o
= False positive (FP), .
S N True negative (TN),
b Negative (N) type | error, false alarm,
< correct rejection
overestimation
Positive predictive value (PPV), s
Prevalence 4 False omission rate (FOR)
_ P precision ZFN _4 _ NPV
SPeN = £ =1-FDR Bl

False discovery rate (FDR) Negative predictive value (NPV) = ;’%

Accuracy (ACC) = TE+TN
uracy ()= PN =;;=1—PPV —1_FOR
Balanced accuracy (BA) F4 score Fowlkes—Mallows index (FM)

_TPR E TNR - 2PPV+xTPR =3 +2TP - = JPPVSTPR

Precision and recall are then defined as:12%]

t;
Precision = P
tp+ fp

t;
Recall = .
tp+ fn

Sources: [S]6]7)B][9)10](11][12][13] viewtalk-edit

Informedness, bookmaker informedness (BM) Prevalence threshold (PT)
VTPRxFPR—FPR

=TPR+TNR -1 =~ SPR_FPR

True positive rate (TPR), recall, sensitivity (SEN), False negative rate (FNR),

probability of detection, hit rate, power miss rate
TP _FN_
=5 =1-FNR =p =1-TPR

False positive rate (FPR), True negative rate (TNR),
probability of false alarm, fall-out specificity (SPC), selectivity

FP N
=x=1-TNR =x =1-FPR

Positive likelihood ratio (LR+) Negative likelihood ratio (LR-)
_TPR — ENR
= FPR = TNR

Markedness (MK), deltaP (Ap)

Diagnostic odds ratio (DOR) = LR+
=PPV +NPV - 1 9 (DORY= pr=

Matthews correlation coefficient (MCC) Threat score (TS), critical success index (CSl), Jaccard index
TP

= VTPRXTNRXPPVXNPV —/FNRxFPRxFORXFDR = IPTFNTFP

Terminology and derivations
from a confusion matrix
condition positive (P)
the number of real positive cases in the data
condition negative (N)
the number of real negative cases in the data

N
03
% PRECISION AND RECALL
Precision = tp
tp + fp
Recall = - fffn

(33 PRECISION AND RECALL

HEISENBUG Mocaa

2019 MOSCOW 5-6 pekabps 2019

Anroputmy AArOpUTMY
HpaBUTCA He HpaBuUTCA

Xopowee TP FN

Mhoxoe FP TN

Roman Poborchiy, Heisenbug 2019

So we need proper dashboards for aggregation of
results

7 ;

@ EXISTING SOLUTIONS
WHAT DO WE ALREADY HAVE

"

Lok

EXISTING SOLUTIONS

Commercial tools and commercial test suites
Custom scripts and test frameworks
Millions of not structured tests

Recreation of a same wheel again and again

BUT

SO

NATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY
U.S.DEPARTMENT OF COMMERCE .

CWE AUTOS'SAR" SRS

Enabling continuous innovations

CERT

(03 Q£ : MAIN LIST OF WEAKNESSES
& O

- Common Weakness Enumeration
(CWETM) |S a Home About CWE List Scoring
. . CWE-787: Out-of-bounds Write
community-developed list of T

common software and hardware S sl : : : :
weakness types

¥ Description

' _/ Common Weakness Enumeration
C_u/\«

A Community-Developed List of Software & Hardware Weakness Types

Mapping Guidance Community News Search

The software writes data past the end, or before the beginning, of the intended buffer.
¥ Extended Description

Typically, this can result in corruption of data, a crash, or code execution. The software may modify an index or perform pointer arithmetic that references a memory location that is outside of the
- H boundaries of the buffer. A subsequent write operation then produces undefined or unexpected results.
Weaknesses that could result in

¥ Alternate Terms
S Ste mS netWOFkS Or hardware Memory Corruption: The generic term "memory corruption” is often used to describe the consequences of writing to memory outside the bounds of a buffer, or to memory that is invalid, when the
\/ 1 1 root cause is something other than a sequential copy of excessive data from a fixed starting location. This may include issues such as incorrect pointer arithmetic, accessing

. invalid pointers due to incomplete initialization or memory release, etc.
being vulnerable to attack " ° i

7 Relationships
» Modes Of Introduction
¥ Applicable Platforms

@ Languages

C (Often Prevalent)

C++ (Often Prevalent)

Class: Assembly (Undetermined Prevalence)
Technologies

Class: ICS/QT (often Prevalent)
¥ Common Consequences
© scope Impact

Integrity

Likelihood
Technical Impact: Modify Memory; DoS: Crash, Exit, or Restart; Execute Unauthorized Code or Commands
Availability

https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html

¥ Demonstrative Examples
Example 1
The following code attempts to save four different identification numbers into an array.

Example Language: C

int id_sequence[3];

/* Populate the id array. */
id_sequence[0] = 123;
id_sequence[1] = 234;

id_sequence[2] = 345;
id_sequence[3] = 456;

Since the array is only allocated to hold three elements, the valid indices are 0 to 2; so, the assignment to id_sequence[3] is out of bounds.
Example 2
In the following example, it is possible to request that memcpy move a much larger segment of memory than assumed:

Example Language: C
int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory,
* else, return -1 to indicate an error
W/
int main() {
Hemcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1));
.

5 O

AUTOMOTOR INDUSTRY AND MORE

A

MISRA Compliance:2020

Achieving compliance with
MISRA Coding Guidelines

AUTOEO SAR"

+
Enabling continuous innovations
C/C++ benchmarks
Mandatory, Required, Advisory guidelines
More code-style inspections than anything else
Dir 4.4 Sections of code should not be “commented out”
Category Advisory

Applies to €90, €99

Amplification
This rule applies to both // and /* ... */ styles of comment.
Rationale

Where it is required for sections of source code not to be compiled then this should be achieved
by use of conditional compilation (e.g. #if or #ifdef constructs with a comment). Using start and end
comment markers for this purpose is dangerous because C does not support nested comments, and
any comments already existing in the section of code would change the effect.

See also

Rule 3.1, Rule 3.2

Section 7: Directives

Content Overview

<[>

Secure Coding

This site supports the development of coding
standards for commonly used programming
languages. The standards are developed

through a community effort by members of the

software development and software security communities.

CERT Java Coding Standard

The CERT Oracle Secure Coding Standard for
Java provides rules for secure coding in the
Java programming language. This coding
standard affects the wide range of software

systems developed in the Java programming language.

-y

Agile Collaboration Group

The Agile Collaboration Group provides a forum

for sharing experience and knowledge about

applying Agile in larger programs. It can provide

a continuing stream of unbiased guidance on

using Agile methods and has become a resource for "lessons
learned" about applying Agile to larger-scale projects.

CERT SEI

CERT C Coding Standard

This standard provides rules for secure coding
in the C programming language.

CERT Android Coding Standard

This standard provides rules for secure coding

of applications (apps) for the Android platform.

CERT C++ Coding Standard

This standard provides rules for secure coding
in the C++ programming language.

CERT Perl Coding Standard

The CERT Perl Secure Coding Standard provides
rules and recommendations for secure coding in
the Perl programming language.

o3

5 O

CERT CERT SEI

SERO0O0-J. Enable serialization compatibility during class evolution

class GameWeapon implements Serializable {
int numOfWeapons = 10;

public String toString() {
return
String.valueOf(numOfWeapons);
}
b

class GameWeapon implements Serializable {
private static final long serialVersionUID =

int numOfWeapons = 10;
public String toString() {

return String.valueOf(numOfWeapons);

}

24L;

https://wiki.sei.cmu.edu/confluence/display/java/SER00-J.+Enable+serialization+compatibility+during+class+evolution

NATIONAL INSTITUTE OF

STANDARDS AND TECHNOLOGY
U.S.DEPARTMENT OF COMMERCE

“To promote U.S. innovation and industrial competitiveness by
advancing measurement science, standards, and technology in ways

that enhance economic security and improve our quality of life.”

FILES
v src
v main
v java
v testcases
v CWE113_HTTP_Response_Splitting
v s01
CWE113_HTTP_Response_Splitting__F
CWE113_HTTP_Response_Spliting_F
v testcasesupport
AbstractTestCaseServiet.java
AbstractTestCaseServietBase.java
10.java
manifest.sarif
RESULTS
improper Neutralization of CRLF Sequences in
HTTP Headers (HTTP Response Splitting’)

%

try

/% read string from file into data %/

streamFileInput = new FileInputStream(file);

readerInputStream = new InputStreamReader(streamFileInput,)i
readerBuffered = new BufferedReader(readerInputStreanm);

/* POTENTIAL FLAW: Read data from a file x/

/* This will be reading the first "line" of the file, which

* could be very long if there are little or no newlines in the file %/
data = readerBuffered.readLine();

}
catch (IOException exceptIO)
{
10.logger.log(Level.WARNING, » exceptI0);
}
finally
{
/% Close stream reading objects %/
try
{
if (readerBuffered != null)
{
readerBuffered.close();
}
¥
catch (IOException exceptIO)
{
10.logger.log(Level.WARNING, , exceptI0);
}

NATIONAL INSTITUTE OF

STANDARDS AND TECHNOLOGY
U.S.DEPARTMENT OF COMMERCE

/* TEMPLATE GENERATED TESTCASE FILE

Filename: CWE690_NULL_Deref_From_Return__inté4_t_malloc_21.c

Label Definition File: CWE690_NULL_Deref_From_Return.free.label.xml

Template File: source-sinks-21.tmpl.c

*/

/%

* (@description

* CWE: 690 Unchecked Return Value To NULL Pointer

* BadSource: malloc Allocate data using malloc()

* Sinks:

* GoodSink: Check to see if the data allocation failed and if not, use data
BadSink : Don't check for NULL and use data

* Flow Variant: 21 Control flow: Flow controlled by value of a static global variable. All functions contained

in one file.

*/
#include <wchar.h>
#ifndef OMITBAD

/* The static variable below is used to drive control flow in the sink function %/
static int badStatic = 0;

static void badSink(inté4_t * data)
{
if(badStatic)

{
[/* FLAW: Initialize memory buffer without checking to see if the memory allocation function failed %/
data[0] = 5LL;

)

printLonglLonglLine(data[0]);
free(data);

11 STANDARD PERFORMANCE
G S EVALUATION CORPORATION

OOKNAL Performance 19.11 / 10:30 - 11:15 (MCK)

Tussle — HOBbI popmaT
6eHYMapKUHra peasbHbIX
NMPUIO)KEHUN

=2 S A

KomaHga Azul Systems 3aoneHcopcuna HOBbli HperMBOPK ANA USMEpPEHUS
NPOV3BOAUTENBHOCTU peanbHblx NpunoXxeHuin — Tussle. B cBoem aoknaae Anekcei onuweT
cTapble cnoco6bl 3aMepoB M NOACHUT, noyeMy throughput u latency 6onblue He MoryT
pacckasaTb BaM O NPOM3BOAUTENBHOCTU NPUNOXEHUSA. OH Tak)Ke O6bSACHUT, NoYemy
SPECjbb2015, Ha KOTOPOI MepSItOTCA OCHOBHbIE MPOU3BOANTENM Xene3a, — 60/blUo 06MaH 1
pacckaxkeT nNpo cynepcoBpeMeHHy MeTOL0NOrMI0 Ha ocHoBe Tussle.

#enterprise #benchmark

Alexey Ignatenko, Joker 2022

4 STANDARD PERFORMANCE
O S EVALUATION CORPORATION

All SPEC JBB2015 Results Published by SPEC

spec

These results have been submitted to SPEC; see the disclaimer before studying any results.

Search published SPECjbb2015results
Last update: 2022-09-20t12:36

| Search | SPECjbb2015-Composite | SPECjbb2015-Distributed | SPECjbb2015-MultiJVM |

SPECjbb2015-Composite (185):

[Search in SPECjbb2015-Composite results]

ASUSTeK Computer Inc. RII00-E10:-R512U STRL Oracle Java SE 16.0.1 Java HotSpot 64-bit Server VM, version 16.0.1 252973 215468
ASUSTeK Computer Inc. ROUHIEELER S 12U G Oracle Java SE 16.0.1 Java HotSpot 64-bit Server VM, version 16.0.1 338796 298117
ASUSTeK Computer Inc. RST20HIORS12 e Oracle Java SE 17 Java HotSpot 64-bit Server VM, version 17 255915 226936
ASUSTeK Computer Inc. Rl orag OFEcle Java SE 1701 Tava HotSpot 64-bit Server VM, version 170.1 372676 [329839
Cisco Systems Cisco UCS C240 M5 ETRAL Oracle Java SE 8ul31 Java HotSpot 64-bit Server VM, version 1.8.0_131 155296 75071
Cisco Systems [l e o Oracle Java SE 8u131 Java HotSpot 64-bit Server VM, version 1.8.0_131 262190 97569
Cisco Systems (Ciaco ICS C240 M> L Oracle Java SE 11.0.2 Java HotSpot 64-bit Server VM, version 11.0.2 162355 95906
Cisco Systems EicolUES el o T Oracle Java SE 16.0.1 Java HotSpot 64-Bit Server VM version 16.0.1 193086 176283

2 SPEC

NOT ONLY ABOUT PERFORMANCE

401.bzip2
SPEC CPU2006 Benchmark Description

Benchmark Name

401 bzip2

Benchmark Author

Julian Seward <jseward [at] acm.org>

Benchmark Program General Category

Compression

Benchmark Description

401.bzip2 is based on Julian Seward's bzip2 version 1.0.3. The only difference between bzip2 1.0.3 and 401.bzip2 is that SPEC's version of bzip2 performs no file /O other than reading the input. All compression and decompression happens entirely in memory. This
is to help isolate the work done to only the CPU and memory subsystem.

Input Description

401 bzip2's reference workload has six components: two small JPEG images, a program binary, some program source code in a tar file, an HTML file,and a " ined" file, which is ive of an archive that contains both highly compressible and not very
compressible files.

Each input set is compressed and decompressed at three different blocking factors ("compression levels"), with the end result of the process being compared to the original data after each decompression step.

o3

53 19

WHAT ELSE?

lit — LLVM Integrated Tester V:./ aL LVM

CCCCCCCC
RRRRRRRRRRRRRR

ALLVM

COMPILER
INFRASTRUCTURE

5 O

- Python scripts
- Inline syntax in test sources
- Only cli application

LIT

// RUN: %clang_ccl -fsyntax-only -verify -std=c+11 %s
// RUN: %clang_ccl -fsyntax-only -verify -std=c+1y %s
-DCXX1Y

struct NonLiteral { NonLiteral(); };
// A type is a literal type if it is:

// [C+1y] - void

constexpr void f() {}

#ifndef CXX1Y

// expected-error@-2 {{'void' is not a literal type}}
#endif

PROBLEMS OF EXISTING SOLUTIONS

& devandi/AnalyzeTool pubic @watch 1

<> Code (Issues 1 17 Pullrequests (Actions ffJ Projects [0 Wiki (@ Security | Insights

- No universal frameworks | i | e

- No aggregation/structuralization of S °
penchmarke =k
- Nomodernsoutions
- No optimization and automatization
- We see a good scientific, but low class ‘

PMDResultConverter.py

engineering work B s

[ResultConverter. Py

[} ScannerCWEMapping.py

D ScannerlssueHolder.py

7 ;

@ SAVE
WHAT DO WE SUCBEST

"

Lok

HOW DO WE SOLVE IT

HOW STANDARDS PROUFERATE:

(<662 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

SITUATION:

THERE ARE
|4 COMPETING
STANDARDS.

W7 RiDICULOLS)

WE NEED To DEVELORP
ONE UNNERSAL STANDARD
THAT COVERS EVERYONE'S
USE CASES. YERH!

SOON:

SITUATION:

THERE ARE
|5 COMPETING
STANDARDS.

HOW TO CLOSE THESE GAPS

Native CLI application that can process readable
tests with different plugins

https://github.com/saveourtool/save-cloud

01

02

https://github.com/saveourtool/save

Some specific CI/CD service, that has standard
benchmarks and executes tests on flexible cluster

https://github.com/cqfn/save
https://github.com/cqfn/save-cloud
https://github.com/cqfn/save
https://github.com/cqfn/save-cloud

Software Analysis Verification & Evaluation

SAVE-CLI

{0} CONCEPT POINTS

@ What did we want (and still want) to achieve?

Native application

Kotlin Native Multiplatform
Win/Linux/MacQOS

Plugins and reporters
for test logic
(processing)

Plugins and reporters should
have a common interface SARIF

Configuration
mechanism

Hierarchical inheritance
Logic via config DSL (FOM&)

DEFAULT PLUGINS
& O

Approaches of testing linters

[FIX] plugin

1. Execute tested tool that should be _ ‘
tested on the test resource with Test m — | SAVE Plugins (modes of testing)

suffix in the name

2. Compare the result with the resource o
. . Test File with “Test”
with Expected suffix in the name postfix in the name

)

MySomess:
V. ometh’”gTestja,,
Java

DEFAULT PLUGINS
& O

Approaches of testing linters

[WARN] plugin

1. Execute tested tool that should be tested on m [] SAVE Plugins (modes of testing)

the test resource with Test suffix in the

name
2. Map and Compare the output with special Test File with “Test”
metadata postfix in the name

)

Mys, .
V. ometh’”gTestja,,
Java

CONFIGURATION
5 O

[general])
tags = ["documentation", "custom tag", “other tags"]
description = "Test for diktat - linter and formatter for Kotlin"
suiteName = "warnings" —

Common section with the main

execCmd = "java -jar ktlint -R diktat.jar conﬁguraﬂon

expectedWarningsPattern = "// ;warn:(.+):(\\d+): (.+)"

[warn] —
testNameSuffix = "Test.kt"
actualWarningsPattern="(\\w+\\..+): (\\d+) : (\\d+): (\\[.*\\].%)$"
exactWarningsMatchHasColumn = true

warningTextHasLine = true — Plugins (test execution logic).
[Fix] Optional
execFlags = "-F"

©
S

& IN-FILE DSL

package com.saveourtool.diktat.test.resources.test.paragraphl.naming.enum_

// ;warn:3:1: [MISSING_KDOC_TOP_LEVEL] all public and internal top-level classes and functions should have
Kdoc{{.*}}
// ;warn:30: [WRONG_DECLARATIONS_ORDER] declarations of constants and enum members should be sorted{{.*}}
enum class EnumTestDetection {
// ;warn:$line+1:5: [ENUM_VALUE] enum values should be in selected UPPER_CASE format: paSC_SAL_1{{.*x}}
paSC_SA1_1,

PascAs1_f
// ;warn:$line-2:5: [ENUMS_SEPARATED] {.*}} last enum entry must end with a comma

// swarn:1:9: {{.*}}[PACKAGE_NAME_INCORRECT_PREFIX] package name should start from company's domain:
com.saveourtool.save{{.*}}

L}

& IN-FILE DSL

package com.saveourtool.diktat.test.resources.test.paragraphl.naming.enum_

// cwarn:3:1: [MISSING_KDOC_TOP_LEVEL] all public and internal top-level classes and functions should have
Kdpc{{.*}}
// Swarn:30: [WRONG_DECLARATIONS_ORDER] declarations of constants and enum members should be sorted{{.*}}

enum class EnumTestDetgction {
// ;warn:3tine+1:5: [ENUM_VALUE] enum values should be in selected UPPER_CASE format: paSC_SAT_1{{.*}}

paSC_SA1_1,

PascAsl_f
// cwarn:$1ine-2:5: [ENUMS_SEPARATED] {.*}} last enum entry must end with a comma

// swarn:1:9: {{.*}}[PACKAGE_NAME_INCORRECT_PREFIX] package name should start from company's domain:
com.saveourtool.save{{.*}}

L}

& IN-FILE DSL

package com.saveourtool.diktat.test.resources.test.paragraphl.naming.enum_

// ;warn:3:1: [MISSING_KDOC_TOP_LEVEL] all public and internal top-level classes and functions should have
Kdoc{{.*}}
// ;warn:30: [WRONG_DECLARATIONS_ORDER] declarations of constants and enum members should De sorte =3
enum class EnumTestDetection {
// ;warn:$line+1:5: [ENUM_VALUE] enum values should be in selected UPPER_CASE format: paSC_SAL_1{{.*x}}
paSC_SA1_1,

PascAsl_f
// ;warn:$line-2:5: [ENUMS_SEPARATED] {.*}} last enum entry must end with a comma

// swarn:1:9: {{.*}}[PACKAGE_NAME_INCORRECT_PREFIX] package name should start from company's domain:
com.saveourtool.save{{.*}}

L}

; s
5 CONFIGURATION INHERITANCE

[e.toml]
[/ MyTestkt | N
[save.toml] Test suite
' MyTest1.kt | /
——| save.toml
K .)

SAVE-CLOUD

¢

Processing mechanism on the High-Level

DB with Historical results

:/—W%UI -
—_— [SaveOurTool.com >

GitHub Repo

l l with SAVE Backend & Recovery
Benchmarks
Custom Standard
Tests Benchmarks | pull only updates
Select your own i 22
N . Select existing pre-
tesk suttes- Fromgit loaded test suites /Cluster with Docker\
repository
Images
Orchestrator ! o
. SAVE-cli || SAVE-cli |
(Tests detection and preprocessing }——* r@‘ | SAVE-cli || SAVE-li |

L0 (X X 4

Test Batches

—_—

SAVE | project ' CQFN.org

Diktat ' run Awesome Benchmarks Try SAVE format SAVE on GitHub Projects board ~ Contests

Project Diktat s

About

INFO RUN STATISTICS SETTINGS
TESTING TYPES TEST CONFIGURATION INFORMATION
Evaluate your tool with your 1. Upload or select the tool (and other resources) for testing: Edit (@
own tests o Tested tool name: Diktat
Select a file from existing 3
Tested tool Url:
Evaluate your tool with public D _—
test suites 2. Upload files] escription:
Participate in SAVE contests 2. Select the SDK if needed: D Latest Execution
with your tool & Execution History
SDK = Default +
Version latest s

3. Specify test-resources that will be used for testing:

Execution command

Batch size (default: 1): S

Test Suites:*

klick to open selector

Copyright © SAVE 2021-2022
Version 0.4.0-alpha.0.81+7fdc3ch

SAVE

sandbox

Awesome Benchmarks Try SAVE format SAVE on GitHub

Sandbox

save.toml ¢ chrome

[general]

tags = ["demo"]

description = "saveourtool online demo"
suiteName = "Test"
execCmd="RUN_COMMAND"

language = "Kotlin"

[warn]

execFlags = "--build-upon-default-config -i"

actualWarningsPattern = "\\w+ - (\\d+)/(\\d+) - (.*)$" # (default value)

testNameRegex = ".*Test.*" # (default value)

patternForRegexInWarning = ["{{", "}}"]

Extra flags will be extracted from a line that mathces this regex if it's present in a file
runConfigPattern = "# RUN: (.+)"

&, Upload files e b Ak e SDK | Default

Version latest

Projects board

Contests

About

Super admin @

SAVE /| CQFN.org /' Diktat

history

execution Awesome Benchmarks ~ SAVE format SAVE on GitHub

Projects board

Contests

About

FINISHED

Project version:
264e5febBf4c6410d70536d6fcAbdf090df62287

Y Status: | ANY

Start time

! 2022-08-08T15:31:14Z

Executed command

Reason (additional info &)

2 2022-08-08T15:31:14Z

3 2022-08-08T15:31:14Z

4 2022-08-08T15:31:14Z

5 2022-08-08T15:31:14Z

6 2022-08-08T15:31:14Z

7 2022-08-08T15:31:14Z

8 2022-08-08T15:31:14Z

) 2022-08-08T15:31:14Z

INII_NANATIR- 1147

Test suite

PASS RATE TESTS RUNNING FAILED PASSED PRECISION RECALL
83% 24 0 3 20 78 929
— File name: Test suite: Tags:
End time Status Missing Matched Test Name Plugin type
2022-08-08T15:32:35Z PASSED 0 0 fix/smoke/src/m ... ExamplelTest.kt FixPlugin

java —jar ktlint -R diktat.jar -F /tmp/FixPlugin--997674868/fix/smoke/src/main/kotlin/org/cqfn/save/ExamplelTest.kt

Completed successfully without additional information

2022-08-08T15:32:35Z PASSED 0 0 fix/smoke/src/m ... nes/Bug1Test.kt FixPlugin
2022-08-08T15:32:35Z PASSED 0 0 fix/smoke/src/m ... pty/BuglTest.kt FixPlugin
2022-08-08T15:32:35Z PASSED 0 0 fix/smoke/src/m ... nes/Bug1Test.kt FixPlugin
2022-08-08T15:32:35Z PASSED 0 0 fix/smoke/src/m ... er1/BuglTest.kt FixPlugin
2022-08-08T15:32:35Z PASSED 0 74 fix_and_warn/sm ... er1/BugiTest.kt FixAndWarnPlugin
2022-08-08T15:32:35Z PASSED 0 4 fix_and_warn/sm ... er2/Bug2Test.kt FixAndWarnPlugin
2022-08-08T15:32:35Z PASSED 0 4 fix_and_warn/sm ... Example1Test.kt FixAndWarnPlugin
2022-08-08T15:32:35Z PASSED 0 882 warn/chapter1/E ... nakeCaseTest.kt WarnPlugin
2077.NR-NAT1R-22:3R7 IGNARFN N n wiarnlchantar1/GarhanaToct b \AarnPliinin

Autofix: Smoke Tests

Autofix: Smoke Tests

Autofix: Smoke Tests

Autofix: Smoke Tests

Autofix: Smoke Tests

Autofix and Warn

Autofix and Warn

Autofix and Warn

Only Warnings: General

NOnhv \Aarninac: (Goanaral

Rerun execution C'

Tags

[fix, smoke]

[fix, smoke]

[fix, smoke]

[fix, smoke]

[fix, smoke]

[fix and warn]

[fix and warn]

[fix and warn]

[warn, tagl]

Nararn +am11

Agent ID

d1ld2e2f8bcl8

d1d2e2f8bc18
d1ld2e2f8bcl8
dld2e2f8bcl8
d1ld2e2f8bcl8
dld2e2f8bcl8
d1ld2e2f8bcl8
d1d2e2f8bcl8
d1d2e2f8bcl8

A142a72f8h 1R

+ HOW WE WANT TO MAKE THE
WORLD A BETTER PLACE

¢

SAVE

awesome-benchmarks Awesome Benchmarks

News

SAVE
Checkout lat:

n SAVE project
SAVE-cloud

Check the GitHub SAVE-cli

Search for the benchmark

Try SAVE format

Awesome Benchmarks Archive

Al AUDIT CODING_STANDARD PERFORMANCE STATIC_ANALYSIS

CodeXGLUE

#static_analysis #juliet #security

© 660 00 0 O

SAVE on GitHub Projects board Contests About

Purpose of this list

As a grol enthusiasts who create dev-tools (includi

tools), \ k of materials related to t

benchma be used to evaluate st our application:

we ed is curated list of standards, tests and

benchmarks that can be used for testing and evaluating dev tools.

focus is mainly on the code analysis, but is not limited by this category

L benchmarks that could be

for creators o

Easy contribution steps

©) Go to the awesome-benchmarks repository
18 Cre 3 fork to your account
+ Create the

& Add your b

description in a proper format
1chmark to benchmarks dir
vith *./gradlew build"

main J

https://qgithub.com/saveourtool/awesome-benchmarks

useful

Super admin @

https://github.com/saveourtool/awesome-benchmarks

SAVE / contests Awesome Benchmarks ~ Try SAVE format SAVE on GitHub Projects board Contests About e @

Welcome to SAVE contests! New contests

Certification and contests Hurry up! &

On this page you can participate or even propose
' Checkout and participate in newest contests
contests in the area of code analysis. If you would like f f

to participate: select the contest from active contests >

enroll to it with your project Weekly-c-contest-1

newl

Active contests: Finished contests:

Contest 2 5
Weekly-c-contest-1
Weekly hard static analysis contest (2022) Wt o ke vour o comtest? Write
Created by: CQFN.org 1 E ant to «L\,v\ ur ow st? Write
[1 < u mal
| Enrolt || Descr > l
L | it

saveourtool@gmail.com

P Global Rating <[> Available Contests & Your stats

ORGS TOOLS ACTIVE FINISHED PLANNED 0.00
Clang-tidy

CQFN.org 556
Test 0.00

PMD

NIST.gov 0.0 el sl 6,00

Weekly-c-contest-1 Ktlint

LLVM.org Weekly hard stat

Enroll

analysis-dev

@ AS A CONCLUSION:
& SOMETHING ELSE INTERESTING?
(o3 PLANS?

s (o
-

)

[[expected] hello world | [

1 [actual] world, hi! }

AS A CONCLUSION:
WHEN OUR APPROACH CAN BE USED?

STATIC ANALYZERS AND AUTO-FIXERS COMPILERS AND THEIR PARTS
Checking warnings in the code Testing generated IR and generated final code
Checking auto-fixed code Expected behaviour of compiled program

Warnings and errors in the front-end (parser)

3

THANK YOU FOR LISTENING!

https://github.com/akuleshov7
g https://github.com/saveourtool

https://github.com/akuleshov7
https://github.com/saveourtool

