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Pods

Nodes
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Nodes

Place us on the 
same rack!

Do NOT place us 
on the same rack!

POD
§ 2GB RAM
§ 16GB disk
§ 1 core

Distribute us evenly!

30 hard and soft 
constraints

NP-Hard 
Multi-dimensional 
bin-packing with 

constraints
4
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Custom
Best-effort
Heuristics
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foreach (       )

.filter(H1,  ,  )

.filter(H2,  ,  )
…
.filter(Hn,  ,  )
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Initial PlacementQueue

.score(S1,  ,  )

.score(S2,  ,  )
…
.score(Sn,  ,  )

:40Hard constraints 
Valid nodes, Capacity, Affinities, Anti-affinities…

Soft constraints
Nodes with images, load balancing…

Filter-score approach



foreach (       )

.filter(H1,  ,  )

.filter(H2,  ,  )
…
.filter(Hn,  ,  )
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Initial PlacementQueue

.score(S1,  ,  )

.score(S2,  ,  )
…
.score(Sn,  ,  )

:40 :85

Assign pod to
highest scored node



foreach (       )

.filter(H1,  ,  )

.filter(H2,  ,  )
…
.filter(Hn,  ,  )
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Queue

.score(S1,  ,  )

.score(S2,  ,  )
…
.score(Sn,  ,  )

Each policy is 
implemented as a 
heuristic



foreach (       )

.filter(H1,  ,  )

.filter(H2,  ,  )
…
.filter(Hn,  ,  )
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Queue

Global reasoning 
about groups of 
pods/nodes is hard

Do NOT place us 
on the same rack!

Requires brittle pre-computing 
and caching optimizations



foreach (       )

.filter(H1,  ,  )

.filter(H2,  ,  )
…
.filter(Hn,  ,  )
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Queue

Global reasoning 
about groups of 
pods/nodes is hard

Optimizations break when 
requirements evolve

Do not place 
THREE of us on the 
same rack!



foreach (       )

.filter(H1,  ,  )

.filter(H2,  ,  )
…
.filter(Hn,  ,  )
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Queue

.score(S1,  ,  )

.score(S2,  ,  )
…
.score(Sn,  ,  )

Sampling, order dependent
Performance?
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foreach (       )

.filter(H1,  ,  )

.filter(H2,  ,  )
…
.filter(Hn,  ,  )

Queue

.score(S1,  ,  )

.score(S2,  ,  )
…
.score(Sn,  ,  )

:40

Initial Placement

Make room by removing low-priority pods

… with more ad-hoc heuristics to:

• pick potential nodes
• evaluate constraints
• retry scheduling assuming some pods 

are removed

Pre-emption?

Batch scheduling?De-scheduling?



Scalability? Decision quality? Extensibility?
Can miss feasible solutionsChallenging with complex 

constraints
Hard to add new policies

and features

Custom
Best-effort
Heuristics
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Cluster state
Database

Constraints
In SQL

Generated 
Code

This Photo by Unknown Author is licensed under CC BY-SA

Constraint
Solver

Our approach

Declarative Cluster Managers (DCM)
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https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://creativecommons.org/licenses/by-sa/3.0/


Scalability Decision quality Extensibility
4x better load balancing

2x faster pre-emption
tightly constrained scenarios

Up to 2x faster (p95) pod
placement than 

Kubernetes Scheduler
(500 node scale)

Policies in <20 lines of SQL
Non-trivial features 

(Unified Pod/VM scheduling)

Our approach

Declarative Cluster Managers (DCM)

Distributed
Transactional 

Datastore

VM Load
Balancing

Tool

Kubernetes
Scheduler

Use cases
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DCM default−scheduler (sampling)
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Cluster state
Database

Constraints
In SQL

Generated 
Code

This Photo by Unknown Author is licensed under CC BY-SA

Constraint
Solver

Programming Model
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https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://creativecommons.org/licenses/by-sa/3.0/


Pod Node Node Mem Overload

@Variable

?
?
?

False
True
False

Foreign Key

Variable 
Columns
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Pod Node Node Mem Overload

@Variable

?
?
?

False
True
False

CREATE VIEW avoid_mem_overload AS
SELECT * 
FROM pods
CHECK pods.node IN

(SELECT node 
FROM nodes
WHERE nodes.mem_overload = false)

@ hard constraint

Select some rows

Predicate

Hard 
Constraints
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Pod Node Node Mem Capacity

@Variable

?
?
?

16GB
16GB
16GB

CREATE VIEW load_balance AS
SELECT min(spare_mem_capacity) 
FROM spare_capacity_by_node
MAXIMIZE

@ soft constraint

Node Spare Mem Capacity

?
?
?

Numeric expressions to 
maximize

q

Soft 
Constraints
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Programming Model

Express policies concisely using joins, 
aggregates, group bys, sub-queries, 

correlated sub-queries, arrays…
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model = Model.create(dbConnection, 
constraints.sql);

model.solve();
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Programming Model

model.updateData();



model.solve();

23

Pod Node
?
?
?

Pod Node

Tables in, tables out



UNSAT cores
Which constraints failed?
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solverException.core()
[“load_constraint”, “az_constraint”]

model.solve(); // unsat L



25

Cluster state
Database

Different models
Different tasks
Different timescales
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initialPlacementModel

preemptionModel

deschedulingModel

Cluster state
Database



Cluster state
Database

Constraints
In SQL

Generated 
Code

This Photo by Unknown Author is licensed under CC BY-SA

Constraint
Solver

DCM Compiler
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https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://creativecommons.org/licenses/by-sa/3.0/
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Schema Constraints

Generated 
Code
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Generated 
Code

CREATE VIEW constraint_1 AS
SELECT * FROM t1 
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);
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CREATE VIEW constraint_1 AS
SELECT * FROM t1 
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

Generated 
Code

List comprehension 
Intermediate Repr.
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CREATE VIEW constraint_1 AS
SELECT * FROM t1 
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

[CHECK t1_c[i] * t2_d[i] == t2_c[j]

| i -> RANGE(t1), j -> RANGE(t2),

WHERE t1_b[i] == t2_b[j] 

AND t2_e[j] == 10]

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

Generated 
Code
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CREATE VIEW constraint_1 AS
SELECT * FROM t1 
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

[CHECK t1_c[i] * t2_d[i] == t2_c[j]

| i -> RANGE(t1), j -> RANGE(t2),

WHERE t1_b[i] == t2_b[j] 

AND t2_e[j] == 10]

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

Backend-specific
Code generation
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CREATE VIEW constraint_1 AS
SELECT * FROM t1 
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

[CHECK t1_c[i] * t2_d[i] == t2_c[j]

| i -> RANGE(t1), j -> RANGE(t2),

WHERE t1_b[i] == t2_b[j] 

AND t2_e[j] == 10]

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

Flagship Backend
ORTools CP/SAT
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CREATE VIEW constraint_1 AS
SELECT * FROM t1 
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

[CHECK t1_c[i] * t2_d[i] == t2_c[j]

| i -> RANGE(t1), j -> RANGE(t2),

WHERE t1_b[i] == t2_b[j] 

AND t2_e[j] == 10]

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {

var t2_it = t2Index.get(t1.get(t1_it).getB());

if (t2_it == null) continue;  

if (t2_e.get(t2_it).getE() == 10) {

var i1 = o.prod(t1.get(t1_it).getCVar(), 
t2.get(t2_it).getDVar());

var i2 = o.eq(t1_c[t1_it], i1);

model.addEquality(i1, i2);

}

}

Generated 
Code
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SELECT * FROM t1

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {

}

Iterate over tables
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SELECT * FROM t1 
JOIN t2 ON t1.b = t2.b

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {

var t2_it = t2Index.get(t1.get(t1_it).getB());

if (t2_it == null) continue;

}

Joins with indexes
or nested for loops
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SELECT * FROM t1 
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {

var t2_it = t2Index.get(t1.get(t1_it).getB());

if (t2_it == null) continue;

if (t2_e.get(t2_it).getE() == 10) {

}

}

Remove irrelevant rows
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SELECT * FROM t1 
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {

var t2_it = t2Index.get(t1.get(t1_it).getB());

if (t2_it == null) continue;

if (t2_e.get(t2_it).getE() == 10) {

var i1 = o.prod(t1.get(t1_it).getCVar(), 
t2.get(t2_it).getDVar());

var i2 = o.eq(t1_c[t1_it], i1);

model.addEquality(i1, i2);

}

}

Encode into constraints
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CREATE VIEW constraint_1 AS
SELECT * FROM t1 
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {

var t2_it = t2Index.get(t1.get(t1_it).getB());

if (t2_it == null) continue;  

if (t2_e.get(t2_it).getE() == 10) {

var i1 = o.prod(t1.get(t1_it).getCVar(), 
t2.get(t2_it).getDVar());

var i2 = o.eq(t1_c[t1_it], i1);

model.addEquality(i1, i2);

}

}

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

Generated 
Code



Key technical challenge
Using the constraint solver effectively

40

Google OR-Tools CP/SAT solver
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CP solver
CP = Constraint Programming

Variables + constraints

Google OR-Tools CP/SAT solver
“Search is dead”
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V2V1Variables !=

Constraint

[ 5, 6, 7 ] [6, 8]Domain
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V2V1 !=

[ 5, 6, 7 ] [6, 8]

Constraint
Propagator
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V2V1 !=

[ 5, 6, 7 ] [6, 8]

Constraint
Propagator

Solver fixes
V1 to 6
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V2V1 !=

[6] [6, 8]

Constraint
Propagator

Solver fixes
V1 to 6
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V2V1 !=

[6] [6, 8]

Constraint
Propagator

Solver fixes
V1 to 6
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V2V1 !=

[6] [6, 8]

Constraint
Propagator

Propagation 
shrinks V2 

domain



48

V2V1 !=

[6] [8]

Constraint
Propagator

A solution!
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Input to CP solver
=

Graph of constraints and variables 
(encoding)
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Goal
Reduce the number of 

intermediate variables and 
constraints

Compiler features
Constant propagation

Common sub-expression elimination
Algebraic Identities
Global constraints



Global constraints
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Constraints on groups of variables
Leverages specialized propagation algorithms



Global constraints
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Example: 
Constraint: ensure (V1  ,V2 , V3, V4) all take different values

V2V1 V3 V4
!=!=

!=

!=

!=

!=



Global constraints
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Example: 
Constraint: ensure (V1  ,V2 , V3,V4) all take different values

AllDifferent (V1  ,V2 , V3,V4) 

Other examples:
Cumulative(), NoOverlap(),…



• Reduce number of introduced 
variables and constraints

• Leverage global constraints

Benchmark
Assign 50 tasks to 1000 workers

Naïve: 25 seconds

With optimizations: 85 ms!

Solver performance is 
highly sensitive
to the encoding
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Use Case: Kubernetes scheduler
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Reason about
single pod, single node 

at a time
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Reason about
multiple pods, multiple nodes

at a time

Building a Kubernetes scheduler

Subscribe to Event Notifications

State in custom 
data-structures State in

With DCMWithout DCM

Policies as filter-score 
passes (imperative)

Policies as constraints
in SQL (declarative)
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initialPlacementModel

preemptionModel

deschedulingModel

Cluster state
Database
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Cluster state
Database

Use database for 
its strengths
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initialPlacementModel

Compute expensive 
aggregates

(e.g., spare capacity per node, 
groups of pods that are affine/anti-affine)

Preferences
(e.g., least loaded nodes are more preferred)

Filter early
(e.g., nodes that are unavailable, 

have no capacity)
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initialPlacementModel

Hard and soft 
constraints that use 

views computed in DB
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Lessons learnt

Most time spent understanding Kubernetes 
semantics, not writing SQL

Performance engineering: most time spent 
on views computed in the DB

Incremental view maintenance

UNSAT cores were valuable during 
development



Scalability Decision quality Extensibility

Evaluation

Distributed
Transactional 

Datastore

VM Load
Balancing

Tool

Kubernetes
Scheduler

Use cases
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Scalability

Evaluation

Kubernetes
Scheduler

63

• 500 node Kubernetes cluster
• Deploy a series of apps in an open-loop
• Azure 2019 trace
• Inter-pod anti-affinity constraint

Recommended best practice,
but a challenging constraint

Do NOT place us 
on the same node!



Kubernetes Scalability Evaluation
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Kubernetes Scalability Evaluation
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No anti-affinity constraints

50% of apps with anti-affinity
constraints

100% of apps with anti-affinity
constraints

Kubernetes Scalability Evaluation



Baseline samples
only 50% of nodes
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p95 latency

DCM =  5.33s
Baseline = 4.13s

Kubernetes Scalability Evaluation
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Kubernetes Scalability Evaluation
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DCM cuts 95th percentile
latency in half

Kubernetes Scalability Evaluation
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More details in the paper
Experiments with up to 10K nodes

Latency breakdown
More compiler details



Cluster state
Database

Constraints
In SQL

Generated 
Code

Constraint
Solver

Scalability Decision quality Extensibility

Cluster
Managers

Hard to 
Build L

DCM J
Code-generate

implementations
from high-level 
specifications
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DCM default−scheduler (sampling)
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Kubernetes
Scheduler

VM Load
Balancing Tool

Distributed 
Transactional

Datastore

Open source under a BSD-2 license
https://github.com/vmware/declarative-cluster-management/


