
Building Scalable and Flexible Cluster
Managers Using Declarative Programming

Lalith Suresh
VMware

github.com/vmware/declarative-cluster-management/

Cluster
Managers

DCM J
Code-generate

implementations
from high-level
specifications

Hard to
Build L

2

Pods

Nodes

3

Nodes

Place us on the
same rack!

Do NOT place us
on the same rack!

POD
§ 2GB RAM
§ 16GB disk
§ 1 core

Distribute us evenly!

30 hard and soft
constraints

NP-Hard
Multi-dimensional
bin-packing with

constraints
4

5

Custom
Best-effort
Heuristics

6

foreach ()

.filter(H1, ,)

.filter(H2, ,)
…
.filter(Hn, ,)

7

Initial PlacementQueue

.score(S1, ,)

.score(S2, ,)
…
.score(Sn, ,)

:40Hard constraints
Valid nodes, Capacity, Affinities, Anti-affinities…

Soft constraints
Nodes with images, load balancing…

Filter-score approach

foreach ()

.filter(H1, ,)

.filter(H2, ,)
…
.filter(Hn, ,)

8

Initial PlacementQueue

.score(S1, ,)

.score(S2, ,)
…
.score(Sn, ,)

:40 :85

Assign pod to
highest scored node

foreach ()

.filter(H1, ,)

.filter(H2, ,)
…
.filter(Hn, ,)

9

Queue

.score(S1, ,)

.score(S2, ,)
…
.score(Sn, ,)

Each policy is
implemented as a
heuristic

foreach ()

.filter(H1, ,)

.filter(H2, ,)
…
.filter(Hn, ,)

10

Queue

Global reasoning
about groups of
pods/nodes is hard

Do NOT place us
on the same rack!

Requires brittle pre-computing
and caching optimizations

foreach ()

.filter(H1, ,)

.filter(H2, ,)
…
.filter(Hn, ,)

11

Queue

Global reasoning
about groups of
pods/nodes is hard

Optimizations break when
requirements evolve

Do not place
THREE of us on the
same rack!

foreach ()

.filter(H1, ,)

.filter(H2, ,)
…
.filter(Hn, ,)

12

Queue

.score(S1, ,)

.score(S2, ,)
…
.score(Sn, ,)

Sampling, order dependent
Performance?

13

foreach ()

.filter(H1, ,)

.filter(H2, ,)
…
.filter(Hn, ,)

Queue

.score(S1, ,)

.score(S2, ,)
…
.score(Sn, ,)

:40

Initial Placement

Make room by removing low-priority pods

… with more ad-hoc heuristics to:

• pick potential nodes
• evaluate constraints
• retry scheduling assuming some pods

are removed

Pre-emption?

Batch scheduling?De-scheduling?

Scalability? Decision quality? Extensibility?
Can miss feasible solutionsChallenging with complex

constraints
Hard to add new policies

and features

Custom
Best-effort
Heuristics

14

Cluster state
Database

Constraints
In SQL

Generated
Code

This Photo by Unknown Author is licensed under CC BY-SA

Constraint
Solver

Our approach

Declarative Cluster Managers (DCM)

15

https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://creativecommons.org/licenses/by-sa/3.0/

Scalability Decision quality Extensibility
4x better load balancing

2x faster pre-emption
tightly constrained scenarios

Up to 2x faster (p95) pod
placement than

Kubernetes Scheduler
(500 node scale)

Policies in <20 lines of SQL
Non-trivial features

(Unified Pod/VM scheduling)

Our approach

Declarative Cluster Managers (DCM)

Distributed
Transactional

Datastore

VM Load
Balancing

Tool

Kubernetes
Scheduler

Use cases

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10 12 14 16 18 20 22 24
End−to−end pod creation latency (s)

EC
DF

DCM default−scheduler (sampling)

16

Cluster state
Database

Constraints
In SQL

Generated
Code

This Photo by Unknown Author is licensed under CC BY-SA

Constraint
Solver

Programming Model

17

https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://creativecommons.org/licenses/by-sa/3.0/

Pod Node Node Mem Overload

@Variable

?
?
?

False
True
False

Foreign Key

Variable
Columns

18

Pod Node Node Mem Overload

@Variable

?
?
?

False
True
False

CREATE VIEW avoid_mem_overload AS
SELECT *
FROM pods
CHECK pods.node IN

(SELECT node
FROM nodes
WHERE nodes.mem_overload = false)

@ hard constraint

Select some rows

Predicate

Hard
Constraints

19

Pod Node Node Mem Capacity

@Variable

?
?
?

16GB
16GB
16GB

CREATE VIEW load_balance AS
SELECT min(spare_mem_capacity)
FROM spare_capacity_by_node
MAXIMIZE

@ soft constraint

Node Spare Mem Capacity

?
?
?

Numeric expressions to
maximize

q

Soft
Constraints

20

Programming Model

Express policies concisely using joins,
aggregates, group bys, sub-queries,

correlated sub-queries, arrays…

21

model = Model.create(dbConnection,
constraints.sql);

model.solve();

22

Programming Model

model.updateData();

model.solve();

23

Pod Node
?
?
?

Pod Node

Tables in, tables out

UNSAT cores
Which constraints failed?

24

solverException.core()
[“load_constraint”, “az_constraint”]

model.solve(); // unsat L

25

Cluster state
Database

Different models
Different tasks
Different timescales

26

initialPlacementModel

preemptionModel

deschedulingModel

Cluster state
Database

Cluster state
Database

Constraints
In SQL

Generated
Code

This Photo by Unknown Author is licensed under CC BY-SA

Constraint
Solver

DCM Compiler

27

https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://creativecommons.org/licenses/by-sa/3.0/

28

Schema Constraints

Generated
Code

29

Generated
Code

CREATE VIEW constraint_1 AS
SELECT * FROM t1
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

30

CREATE VIEW constraint_1 AS
SELECT * FROM t1
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

Generated
Code

List comprehension
Intermediate Repr.

31

CREATE VIEW constraint_1 AS
SELECT * FROM t1
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

[CHECK t1_c[i] * t2_d[i] == t2_c[j]

| i -> RANGE(t1), j -> RANGE(t2),

WHERE t1_b[i] == t2_b[j]

AND t2_e[j] == 10]

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

Generated
Code

32

CREATE VIEW constraint_1 AS
SELECT * FROM t1
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

[CHECK t1_c[i] * t2_d[i] == t2_c[j]

| i -> RANGE(t1), j -> RANGE(t2),

WHERE t1_b[i] == t2_b[j]

AND t2_e[j] == 10]

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

Backend-specific
Code generation

33

CREATE VIEW constraint_1 AS
SELECT * FROM t1
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

[CHECK t1_c[i] * t2_d[i] == t2_c[j]

| i -> RANGE(t1), j -> RANGE(t2),

WHERE t1_b[i] == t2_b[j]

AND t2_e[j] == 10]

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

Flagship Backend
ORTools CP/SAT

34

CREATE VIEW constraint_1 AS
SELECT * FROM t1
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

[CHECK t1_c[i] * t2_d[i] == t2_c[j]

| i -> RANGE(t1), j -> RANGE(t2),

WHERE t1_b[i] == t2_b[j]

AND t2_e[j] == 10]

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {

var t2_it = t2Index.get(t1.get(t1_it).getB());

if (t2_it == null) continue;

if (t2_e.get(t2_it).getE() == 10) {

var i1 = o.prod(t1.get(t1_it).getCVar(),
t2.get(t2_it).getDVar());

var i2 = o.eq(t1_c[t1_it], i1);

model.addEquality(i1, i2);

}

}

Generated
Code

35

SELECT * FROM t1

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {

}

Iterate over tables

36

SELECT * FROM t1
JOIN t2 ON t1.b = t2.b

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {

var t2_it = t2Index.get(t1.get(t1_it).getB());

if (t2_it == null) continue;

}

Joins with indexes
or nested for loops

37

SELECT * FROM t1
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {

var t2_it = t2Index.get(t1.get(t1_it).getB());

if (t2_it == null) continue;

if (t2_e.get(t2_it).getE() == 10) {

}

}

Remove irrelevant rows

38

SELECT * FROM t1
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {

var t2_it = t2Index.get(t1.get(t1_it).getB());

if (t2_it == null) continue;

if (t2_e.get(t2_it).getE() == 10) {

var i1 = o.prod(t1.get(t1_it).getCVar(),
t2.get(t2_it).getDVar());

var i2 = o.eq(t1_c[t1_it], i1);

model.addEquality(i1, i2);

}

}

Encode into constraints

39

CREATE VIEW constraint_1 AS
SELECT * FROM t1
JOIN t2 ON t1.b = t2.b
WHERE t2.e = 10
CHECK t1.c * t2.d = t2.c

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {

var t2_it = t2Index.get(t1.get(t1_it).getB());

if (t2_it == null) continue;

if (t2_e.get(t2_it).getE() == 10) {

var i1 = o.prod(t1.get(t1_it).getCVar(),
t2.get(t2_it).getDVar());

var i2 = o.eq(t1_c[t1_it], i1);

model.addEquality(i1, i2);

}

}

CREATE TABLE T1 (…);

CREATE TABLE T2 (…);

Generated
Code

Key technical challenge
Using the constraint solver effectively

40

Google OR-Tools CP/SAT solver

41

CP solver
CP = Constraint Programming

Variables + constraints

Google OR-Tools CP/SAT solver
“Search is dead”

42

V2V1Variables !=

Constraint

[5, 6, 7] [6, 8]Domain

43

V2V1 !=

[5, 6, 7] [6, 8]

Constraint
Propagator

44

V2V1 !=

[5, 6, 7] [6, 8]

Constraint
Propagator

Solver fixes
V1 to 6

45

V2V1 !=

[6] [6, 8]

Constraint
Propagator

Solver fixes
V1 to 6

46

V2V1 !=

[6] [6, 8]

Constraint
Propagator

Solver fixes
V1 to 6

47

V2V1 !=

[6] [6, 8]

Constraint
Propagator

Propagation
shrinks V2

domain

48

V2V1 !=

[6] [8]

Constraint
Propagator

A solution!

49

Input to CP solver
=

Graph of constraints and variables
(encoding)

50

Goal
Reduce the number of

intermediate variables and
constraints

Compiler features
Constant propagation

Common sub-expression elimination
Algebraic Identities
Global constraints

Global constraints

51

Constraints on groups of variables
Leverages specialized propagation algorithms

Global constraints

52

Example:
Constraint: ensure (V1 ,V2 , V3, V4) all take different values

V2V1 V3 V4
!=!=

!=

!=

!=

!=

Global constraints

53

Example:
Constraint: ensure (V1 ,V2 , V3,V4) all take different values

AllDifferent (V1 ,V2 , V3,V4)

Other examples:
Cumulative(), NoOverlap(),…

• Reduce number of introduced
variables and constraints

• Leverage global constraints

Benchmark
Assign 50 tasks to 1000 workers

Naïve: 25 seconds

With optimizations: 85 ms!

Solver performance is
highly sensitive
to the encoding

54

Use Case: Kubernetes scheduler

55

Reason about
single pod, single node

at a time

56

Reason about
multiple pods, multiple nodes

at a time

Building a Kubernetes scheduler

Subscribe to Event Notifications

State in custom
data-structures State in

With DCMWithout DCM

Policies as filter-score
passes (imperative)

Policies as constraints
in SQL (declarative)

57

initialPlacementModel

preemptionModel

deschedulingModel

Cluster state
Database

58

Cluster state
Database

Use database for
its strengths

59

initialPlacementModel

Compute expensive
aggregates

(e.g., spare capacity per node,
groups of pods that are affine/anti-affine)

Preferences
(e.g., least loaded nodes are more preferred)

Filter early
(e.g., nodes that are unavailable,

have no capacity)

60

initialPlacementModel

Hard and soft
constraints that use

views computed in DB

61

Lessons learnt

Most time spent understanding Kubernetes
semantics, not writing SQL

Performance engineering: most time spent
on views computed in the DB

Incremental view maintenance

UNSAT cores were valuable during
development

Scalability Decision quality Extensibility

Evaluation

Distributed
Transactional

Datastore

VM Load
Balancing

Tool

Kubernetes
Scheduler

Use cases

62

Scalability

Evaluation

Kubernetes
Scheduler

63

• 500 node Kubernetes cluster
• Deploy a series of apps in an open-loop
• Azure 2019 trace
• Inter-pod anti-affinity constraint

Recommended best practice,
but a challenging constraint

Do NOT place us
on the same node!

Kubernetes Scalability Evaluation

64

65

Kubernetes Scalability Evaluation

66

No anti-affinity constraints

50% of apps with anti-affinity
constraints

100% of apps with anti-affinity
constraints

Kubernetes Scalability Evaluation

Baseline samples
only 50% of nodes

67

p95 latency

DCM = 5.33s
Baseline = 4.13s

Kubernetes Scalability Evaluation

68

Kubernetes Scalability Evaluation

69

DCM cuts 95th percentile
latency in half

Kubernetes Scalability Evaluation

70

More details in the paper
Experiments with up to 10K nodes

Latency breakdown
More compiler details

Cluster state
Database

Constraints
In SQL

Generated
Code

Constraint
Solver

Scalability Decision quality Extensibility

Cluster
Managers

Hard to
Build L

DCM J
Code-generate

implementations
from high-level
specifications

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10 12 14 16 18 20 22 24
End−to−end pod creation latency (s)

EC
D

F

DCM default−scheduler (sampling)

71

Kubernetes
Scheduler

VM Load
Balancing Tool

Distributed
Transactional

Datastore

Open source under a BSD-2 license
https://github.com/vmware/declarative-cluster-management/

