
Cocktail of Environments
How to Mix Test and Development Environments and Stay Alive

@aatarasoff

@aatarasoff

@aatarasoff

2

@aatarasoff

3

Минздрав предупреждает

Мнение докладчика может не совпадать с официальной
позицией его работодателя, коллег или других
специалистов.

Все представленные в докладе сведения, примеры,
выводы и другую информацию вы можете использовать
на свой страх и риск. За все ваши действия
ответственность несёте только вы сами.

4

Prologue: No Good Solutions

5

6

Typical Environments

7

Typical Environments

Where real users live

8

Typical Environments

Where QA happens

9

Typical Environments

Where developers can
test their changes

10

No microservices - no problems

11

No microservices - no problems

Testing locally - easy

12

No microservices - no problems

Testing locally - easy

Testing in dev
environment - easy

13

No microservices - no problems

Testing locally - easy

Testing in dev
environment - easy

Testing in test/stage
environment - easy

14

No microservices - no problems

Testing in dev
environment - easy

Testing in test/stage
environment - easy

Testing locally - easy

Testing one - easy

Testing one - easy

Testing many - hard

Chapter 1: Baking Dev Environment

18

19

Work on my machine

20

Work on my machine

Limited number of
services

21

Work on my machine

Limited number of
services

Separated
configuration

22

Telepresence

23

Telepresence

Async processes?

24

Local Async Process Testing

25

Local Async Process Testing

Who will read
a message?

Benefits
● Fast feedback loop

● Good for simple usecases

Drawbacks

● Hard to test complex scenarios

● Hard to collaborate

○ QA

○ other developers

Local Only

26

27

Full Copy for each Developer

28

Full Copy for each Developer

29

Full Copy for each Developer

Own logical DB

30

Full Copy for each Developer

Own logical DB

Own topics and
subscriptions

Issues to
address

● Tool to establish “Vasya” env

○ 10-15 minutes max

● Handle the load

○ 10k workloads and much more

● Support separated infra components

○ dbs in containers

○ emulators for queues

31

Issues to
address

● Tool to establish “Vasya” env

○ 10-15 minutes max

● Handle the load

○ 10k workloads and much more

● Support separated infra components

○ dbs in containers

○ emulators for queues

32

Issues to
address

● Tool to establish “Vasya” env

○ 10-15 minutes max

● Handle the load

○ 10k workloads and much more

● Support separated infra components

○ dbs in containers

○ emulators for queues

33

Optimizations

● Part copy instead of full

○ core services first

○ specific services on-demand

● Shutdown every night

● Env per squad not developer

● Get rid of X

○ do not use service mesh

○ do not keep logs
34

Optimizations

● Part copy instead of full

○ core services first

○ specific services on-demand

● Shutdown every night

● Env per squad not developer

● Get rid of X

○ do not use service mesh

○ do not keep logs
35

Optimizations

● Part copy instead of full

○ core services first

○ specific services on-demand

● Shutdown every night

● Env per squad, not developer

● Get rid of X

○ do not use service mesh

○ do not keep logs
36

Optimizations

● Part copy instead of full

○ core services first

○ specific services on-demand

● Shutdown every night

● Env per squad, not developer

● Get rid of X

○ do not use service mesh

○ do not keep logs
37

Benefits
● Full isolation

● The cognitive load is low

Drawbacks

● Custom configuration

● High resources consumption

● You own - you troubleshooting

Full Copy for each Developer

38

39

Service Injection

40

Service Injection

As a developer I created new
branch: feature/mp-101-bla-bla

41

Service Injection

Deploy each branch to
dev cluster

42

Service Injection

x-service-route: payment-service:mp-101

43

Service Injection

x-service-route: payment-service:mp-101

Nginx unpacks cookie to header

44

We Need More Branches

x-service-route: payment-service:mp-101::cart-service:mp-102

45

We Need More Branches

Async processes?

Benefits

● Low resources consumption

● Less troubleshooting required

● Convinient collaboration

Drawbacks
● Shared resources - poor isolation

● Hard to test async processes

Service Injection

46

Chapter 2: What are You, Stable Dev?

47

48

Typical Environments

49

Atypical Environments

50

Atypical Environments

51

One Cluster - Several Environments

52

Stable Dev

Always contains all the services with
the same versions as in production

53

Stable Dev

Default routes come to it

Always contains all the services with
the same versions as in production

54

Stable Dev

Foundation for developing, testing, and staging

55

Stable Dev

Foundation for developing, testing, and staging

Steady as a rock

56

Stable Dev

Foundation for developing, testing, and staging

Steady as a rock

Developers should
not TEST on it

57

Branch Dev

Developers test
 in branch

58

Branch Dev

“x-service-route” Cookie or HTTP Header

59

Canary Dev

Every new release
is deployed as a
candidate first

60

Canary Dev

Every new release
is deployed as a
candidate first

x-service-route: payment-service:rc

61

What if not?

● No dogfooding

○ A silo between QA and developers

○ Developers are pushed to fix the stage

● We should keep stable two environments instead of one

○ Staging should be stable by design

○ The development environment should be stable too

■ If the authorization service doesn’t work -

developer cannot test their branch

62

What if not?

● No dogfooding

○ A silo between QA and developers

○ Developers are pushed to fix the stage

● We should keep stable two environments instead of one

○ Staging should be stable by design

○ The development environment should be stable too

■ If the authorization service doesn’t work -

developer cannot test their branch

63

Chapter 3: Make Some Code

64

Traffic Routing

65

66

Service Injection

x-service-route: payment-service:mp-101

67

Service Injection

x-service-route: payment-service:mp-101

Nginx unpacks cookie to header

Istio Virtual Service

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: payment-service
spec:
 ...
 http:
 - name: stable
 route:
 - destination:
 host: payment-service.services.svc.cluster.local

68

Istio Virtual Service

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: payment-service
spec:
 ...
 http:
 - name: stable
 route:
 - destination:
 host: payment-service.services.svc.cluster.local

69

Deploy for every stable version
via Helm chart

Route to a Branch

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: payment-service
spec:
 ...
 http:
 - name: payment-service-mp-101
 match:
 - headers:
 x-service-route:
 regex: ^(payment-service:mp-101.*|.*::payment-service:mp-101.*)$
 - name: stable
 route:
 - destination:
 host: payment-service.services.svc.cluster.local 70

We cannot add it with
Helm chart

Virtual Service Merge Operator

apiVersion: istiomerger.monime.sl/v1alpha1
kind: VirtualServiceMerge
metadata:
 name: payment-service-mp-101
spec:
 patch:
 http:
 - name: payment-service-mp-101
 match:
 - headers:
 x-service-route:
 regex: ^(payment-service:mp-101.*|.*::payment-service:mp-101.*)$
 target:
 name: payment-service

71

Deploy for every branch
via Helm chart

72

Propagation Problem

73

Propagation Problem

x-service-route should be propagated

74

Propagation Problem

x-service-route should be propagated

Tracing is a MUST!

75

Propagation Problem

x-service-route should be propagated

Tracing is a MUST!

x-b3-trace-id in response

76

Tricky Case: Migrations that Break

You want to test
migrations in your branch

77

Tricky Case: Migrations that Break

However, you may
affect Stable Dev

You want to test
migrations in your branch

78

Solution: Migrations that Break

79

Solution: Migrations that Break

We chose this variant

80

Tricky Case: Webhooks

81

Tricky Case: Webhooks

Nobody knows about
your internal
infrastructure

82

Solution #1: Webhooks
We can switch URL
for webhook on the

third-party side

83

Solution #1: Webhooks
We can switch URL
for webhook on the

third-party side

However, we affect
Stable Dev

84

Solution #2: Webhooks
Create advanced mock or Fake

to get rid of
External Service dependency at all

85

Solution #3: Webhooks
Use Smart-Proxy

and some correlation ID
for matching requests

from the external service

86

Solution #3: Webhooks

We chose this approach

Use Smart-Proxy
and some correlation ID
for matching requests

from the external service

Unblocking Async Scenarios

87

88

Async Issues

89

Async Issues

Who should
process a message?

90

Let’s Use the Same Appoach

91

Let’s Use the Same Appoach

Developers can
interfere with one

another

92

Subscription per Branch

Issues to
address

● Static subscription for canary

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic

93

Issues to
address

● Static subscription for canary

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic

94

95

Service Catalog

96

Service Catalog

Metadata such as
name, team,

domain, resources

97

Service Catalog
On metadata change

the state machine
tries to re-apply

98

Service Catalog

Modules have
unified interface

99

Service Catalog

Modules use Terraform for
resource management

100

Service Catalog

Ot they can also perform
additional tasks such as

auto-filling the Vault
configuration for a service

101

Deployment Process

102

Deployment Process

Developers can change
meta.yml for their service in
Service Catalog repository

103

Deployment Process

New meta data will be applied

104

Deployment Process

The state machine will align
resources with new meta

105

Deployment Process

Application Delivery Pipeline
checks the state

106

Static Subscriptions
Re-run the state

machine

Change the
Pub/Sub module

107

Static Subscriptions
Re-run the state

machine

Change the
Pub/Sub module

some-subscription-rc
some-subscription-qa

Issues to
address

● Static subscription for canary

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic

108

109

Dynamic Subscriptions

110

Dynamic Subscriptions

Register on branch
first pipeline

111

Dynamic Subscriptions

Register on branch
first pipeline

Re-apply Pub/Sub
module

112

Dynamic Subscriptions

Register on branch
first pipeline

Re-apply Pub/Sub
module

some-subscription-mp-101

113

Dynamic Subscriptions

Deregister on
branch deletion

114

Dynamic Subscriptions

Deregister on
branch deletion

Re-apply Pub/Sub
module

115

Dynamic Subscriptions

Deregister on
branch deletion

Re-apply Pub/Sub
module

order-subscription-mp-101

116

Deployment Process

Issues to
address

● Static subscription for canary

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic

117

118

Common Library

119

Common Library

Skip or Process?

120

Common Library: Decision Maker

It is NOT FOR me

121

Common Library: Decision Maker

It is NOT FOR me It is NOT FOR me

122

Common Library: Decision Maker

It is NOT FOR me It is NOT FOR meIt is FOR me

123

Common Library: Decision Maker

It is NOT FOR me It is NOT FOR meIt is FOR me?

124

Common Library: Decision Maker

Should be aware of all
other versions

125

Common Library

Skip or Process?

Put it back to the
client context

126

Complex Scenarios Supported

Issues to
Address

● Separated DB for branches

○ the same approach as for subscriptions

127

128

Separated DBs Schema

129

Separated DBs Schema

Issues to
Address

● Separated DB for branches

○ the same approach as for subscriptions

○ the incomplete data

130

Chapter 4: Ephemeral Environments

131

132

Welcome to Real Life

133

Welcome to Ephemeral Environments

Types of
Ephemeral

Environments

● One service branch

● Several services branches

○ under one x-source-route

○ Jira-based

● Custom environments

○ for squad (payment-dev)

○ for domain (warehouse)

134

Types of
Ephemeral

Environments

● One service branch

● Several services branches

○ under one x-source-route

○ Jira-based

● Custom environments

○ for squad (payment-dev)

○ for domain (warehouse)

135

136

Custom Ephemeral Environments

Epilogue: Some Conclusions

137

Benefits

● No silo between Dev and QA

● Low resources consumption

● Environments on-demand

138

Drawbacks

● High cognitive load

● Time investments

● Not-fair isolation

139

@aatarasoff

@aatarasoff

@aatarasoff

Questions?

@aatarasoff
140

