
Cocktail of Environments
How to Mix Test and Development Environments and Stay Alive
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Минздрав предупреждает

Мнение докладчика может не совпадать с официальной 
позицией его работодателя, коллег или других 
специалистов.

Все представленные в докладе сведения, примеры, 
выводы и другую информацию вы можете использовать 
на свой страх и риск. За все ваши действия 
ответственность несёте только вы сами.
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Prologue: No Good Solutions
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Typical Environments
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Typical Environments

Where real users live
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Typical Environments

Where QA happens
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Typical Environments

Where developers can 
test their changes
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No microservices - no problems
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Testing one - easy



Testing one - easy

Testing many - hard



Chapter 1: Baking Dev Environment
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Work on my machine
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Work on my machine

Limited number of 
services
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Work on my machine

Limited number of 
services

Separated 
configuration
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Telepresence
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Telepresence

Async processes?
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Local Async Process Testing
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Local Async Process Testing

Who will read 
a message?



Benefits
● Fast feedback loop

● Good for simple usecases

Drawbacks

● Hard to test complex scenarios

● Hard to collaborate

○ QA

○ other developers

Local Only
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Full Copy for each Developer
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Full Copy for each Developer
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Full Copy for each Developer

Own logical DB
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Full Copy for each Developer

Own logical DB

Own topics and 
subscriptions



Issues to 
address

● Tool to establish “Vasya” env

○ 10-15 minutes max

● Handle the load

○ 10k workloads and much more

● Support separated infra components

○ dbs in containers

○ emulators for queues
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Optimizations

● Part copy instead of full

○ core services first

○ specific services on-demand

● Shutdown every night

● Env per squad not developer

● Get rid of X

○ do not use service mesh

○ do not keep logs
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Benefits
● Full isolation

● The cognitive load is low

Drawbacks

● Custom configuration

● High resources consumption

● You own - you troubleshooting

Full Copy for each Developer

38



39

Service Injection
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Service Injection

As a developer I created new 
branch: feature/mp-101-bla-bla
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Service Injection

Deploy each branch to 
dev cluster
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Service Injection

x-service-route: payment-service:mp-101



43

Service Injection

x-service-route: payment-service:mp-101

Nginx unpacks cookie to header
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We Need More Branches

x-service-route: payment-service:mp-101::cart-service:mp-102
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We Need More Branches

Async processes?



Benefits

● Low resources consumption

● Less troubleshooting required

● Convinient collaboration

Drawbacks
● Shared resources - poor isolation

● Hard to test async processes

Service Injection
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Chapter 2: What are You, Stable Dev?
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Typical Environments
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Atypical Environments
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Atypical Environments
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One Cluster - Several Environments
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Stable Dev

Always contains all the services with 
the same versions as in production
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Stable Dev

Default routes come to it

Always contains all the services with 
the same versions as in production
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Stable Dev

Foundation for developing, testing, and staging
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Stable Dev

Foundation for developing, testing, and staging

Steady as a rock
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Stable Dev

Foundation for developing, testing, and staging

Steady as a rock

Developers should 
not TEST on it
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Branch Dev

Developers test
 in branch
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Branch Dev

“x-service-route” Cookie or HTTP Header
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Canary Dev

Every new release 
is deployed as a 
candidate first
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Canary Dev

Every new release 
is deployed as a 
candidate first

x-service-route: payment-service:rc
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What if not?

● No dogfooding

○ A silo between QA and developers

○ Developers are pushed to fix the stage

● We should keep stable two environments instead of one

○ Staging should be stable by design

○ The development environment should be stable too

■ If the authorization service doesn’t work - 

developer cannot test their branch
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Chapter 3: Make Some Code
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Traffic Routing
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Service Injection

x-service-route: payment-service:mp-101
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Service Injection

x-service-route: payment-service:mp-101

Nginx unpacks cookie to header



Istio Virtual Service
---
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
  name: payment-service
spec:
  ...
  http:
  - name: stable
    route:
    - destination:
        host: payment-service.services.svc.cluster.local
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69

Deploy for every stable version 
via Helm chart



Route to a Branch
---
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
  name: payment-service
spec:
  ...
  http:
  - name: payment-service-mp-101
    match:
    - headers:
        x-service-route:
          regex: ^(payment-service:mp-101.*|.*::payment-service:mp-101.*)$
  - name: stable
    route:
    - destination:
        host: payment-service.services.svc.cluster.local 70

We cannot add it with 
Helm chart



Virtual Service Merge Operator
---
apiVersion: istiomerger.monime.sl/v1alpha1
kind: VirtualServiceMerge
metadata:
  name: payment-service-mp-101
spec:
  patch:
    http:
    - name: payment-service-mp-101
      match:
      - headers:
          x-service-route:
            regex: ^(payment-service:mp-101.*|.*::payment-service:mp-101.*)$
  target:
    name: payment-service
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Deploy for every branch
via Helm chart
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Propagation Problem
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Propagation Problem

x-service-route should be propagated
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Propagation Problem

x-service-route should be propagated

Tracing is a MUST!

x-b3-trace-id in response
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Tricky Case: Migrations that Break

You want to test 
migrations in your branch
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Tricky Case: Migrations that Break

However, you may 
affect Stable Dev

You want to test 
migrations in your branch
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Solution: Migrations that Break
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Solution: Migrations that Break

We chose this variant
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Tricky Case: Webhooks
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Tricky Case: Webhooks

Nobody knows about 
your internal 
infrastructure



82

Solution #1: Webhooks
We can switch URL 
for webhook on the 

third-party side
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Solution #1: Webhooks
We can switch URL 
for webhook on the 

third-party side

However, we affect 
Stable Dev
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Solution #2: Webhooks
Create advanced mock or Fake 

to get rid of 
External Service dependency at all
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Solution #3: Webhooks
Use Smart-Proxy 

and some correlation ID 
for matching requests 

from the external service
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Solution #3: Webhooks

We chose this approach

Use Smart-Proxy 
and some correlation ID 
for matching requests 

from the external service



Unblocking Async Scenarios
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Async Issues



89

Async Issues

Who should 
process a message?
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Let’s Use the Same Appoach
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Let’s Use the Same Appoach

Developers can 
interfere with one 

another
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Subscription per Branch



Issues to 
address

● Static subscription for canary

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic
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95

Service Catalog
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Service Catalog

Metadata such as 
name, team, 

domain, resources
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Service Catalog
On metadata change 

the state machine 
tries to re-apply
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Service Catalog

Modules have 
unified interface
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Service Catalog

Modules use Terraform for 
resource management
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Service Catalog

Ot they can also perform 
additional tasks such as 

auto-filling the Vault 
configuration for a service
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Deployment Process
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Deployment Process

Developers can change 
meta.yml for their service in 
Service Catalog repository
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Deployment Process

New meta data will be applied
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Deployment Process

The state machine will align 
resources with new meta
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Deployment Process

Application Delivery Pipeline 
checks the state



106

Static Subscriptions
Re-run the state 

machine

Change the 
Pub/Sub module
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Static Subscriptions
Re-run the state 

machine

Change the 
Pub/Sub module

some-subscription-rc
some-subscription-qa



Issues to 
address

● Static subscription for canary

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic
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Dynamic Subscriptions
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Dynamic Subscriptions

Register on branch 
first pipeline
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Dynamic Subscriptions

Register on branch 
first pipeline

Re-apply Pub/Sub 
module
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Dynamic Subscriptions

Register on branch 
first pipeline

Re-apply Pub/Sub 
module

some-subscription-mp-101
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Dynamic Subscriptions

Deregister on 
branch deletion
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Dynamic Subscriptions

Deregister on 
branch deletion

Re-apply Pub/Sub 
module
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Dynamic Subscriptions

Deregister on 
branch deletion

Re-apply Pub/Sub 
module

order-subscription-mp-101
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Deployment Process



Issues to 
address

● Static subscription for canary

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic
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Common Library



119

Common Library

Skip or Process?
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Common Library: Decision Maker

It is NOT FOR me
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Common Library: Decision Maker

It is NOT FOR me It is NOT FOR meIt is FOR me?
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Common Library: Decision Maker

Should be aware of all 
other versions
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Common Library

Skip or Process?

Put it back to the 
client context
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Complex Scenarios Supported



Issues to 
Address

● Separated DB for branches

○ the same approach as for subscriptions
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128

Separated DBs Schema
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Separated DBs Schema



Issues to 
Address

● Separated DB for branches

○ the same approach as for subscriptions

○ the incomplete data
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Chapter 4: Ephemeral Environments
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132

Welcome to Real Life
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Welcome to Ephemeral Environments



Types of 
Ephemeral 

Environments

● One service branch

● Several services branches

○ under one x-source-route

○ Jira-based

● Custom environments

○ for squad (payment-dev)

○ for domain (warehouse)
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Custom Ephemeral Environments



Epilogue: Some Conclusions
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Benefits

● No silo between Dev and QA

● Low resources consumption

● Environments on-demand
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Drawbacks

● High cognitive load

● Time investments

● Not-fair isolation
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