
Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 1	

Java	11	Reactive	HTTP	Client	

Chris	Hegarty	(	@chegar999	)	
Consulting	Member	of	Technical	Staff	
Java	Platform	Group	
Oracle	
JPoint,	2019	
	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 2	

•  Dublin	City	University	
•  Sun	Microsystems	&	Oracle,	since	2000	
•  Java	Platforms	and	the	JDK	

	

Chris	Hegarty	(@chegar999)	

https://en.wikipedia.org/wiki/Ireland 
https://en.wikipedia.org/wiki/Guinness	
https://en.wikipedia.org/wiki/Saint_Patrick%27s_Day	



Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.				

Safe	Harbor	Statement	
The	following	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.	

3	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 4	

1.   Road	to	the	Java	HTTP	Client	

2.   API	Introduction	

3.   Handling	request/response	data	

Java	11	Reactive	HTTP	Client	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 5	

https://2017.jpoint.ru/en/talks/performance-engineering-story-how-oracle-optimized-http-2-client/	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 6	

1.  Why	are	we	doing	this?	

2.   How	long	does	it	take?	

3.  What	are	the	benefits?	

Common	Q’s?	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 7	

	
	

	 		
HttpURLConnection



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 8	

Motivation	from	JEP	110	

*	JEP	-	JDK	Enhancement-Proposal	

The	existing	HttpURLConnection	API	and	its	implementation	
have	numerous	problems:	
•  The	base	URLConnection	API	was	designed	with	multiple	

protocols	in	mind,	much	of	which	are	now	defunct	(netdoc,	
gopher,	etc.).	

•  The	API	predates	HTTP/1.1	and	is	too	abstract.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 9	

Motivation	from	JEP	110	

*	JEP	-	JDK	Enhancement-Proposal	

The	existing	HttpURLConnection	API	and	its	implementation	
have	numerous	problems:	
•  The	base	URLConnection	API	was	designed	with	multiple	

protocols	in	mind,	much	of	which	are	now	defunct	(ftp,	gopher,	
etc.).	

•  The	API	predates	HTTP/1.1	and	is	too	abstract.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 10	

Motivation	from	JEP	110	

*	JEP	-	JDK	Enhancement-Proposal	

The	existing	HttpURLConnection	API	and	its	implementation	
have	numerous	problems:	
•  The	base	URLConnection	API	was	designed	with	multiple	

protocols	in	mind,	much	of	which	are	now	defunct	(netdoc,	
gopher,	etc.).	

•  The	API	predates	HTTP/1.1	and	is	too	abstract.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 11	

Motivation	from	JEP	110	

*	JEP	-	JDK	Enhancement-Proposal	

The	existing	HttpURLConnection	API	and	its	implementation	
have	numerous	problems:	
•  The	base	URLConnection	API	was	designed	with	multiple	

protocols	in	mind,	much	of	which	are	now	defunct	(netdoc,	
gopher,	etc.).	

•  The	API	predates	HTTP/1.1	and	is	too	abstract	
•  It	is	hard	to	use,	and	has	many	undocumented	behaviors	
•  It	works	in	blocking	mode	only	(	i.e.,	one	thread	per	request/

response	).	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 12	

Motivation	from	JEP	110	

*	JEP	-	JDK	Enhancement-Proposal	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 13	

Motivation	from	JEP	110	

*	JEP	-	JDK	Enhancement-Proposal	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 14	

Incubation	

*	JEP	-	JDK	Enhancement-Proposal	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 15	

Incubation	

*	JEP	-	JDK	Enhancement-Proposal	

•  JEP	110	was	integrated	in	JDK	9.	
•  JDK	9	shipped	Sep	2017	
•  "Incubating	Feature”	

•  Module		jdk.incubator.httpclient
•  Package	jdk.incubator.http
•  Class jdk.incubator.http.HttpClient



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 16	

Incubation	

*	JEP	-	JDK	Enhancement-Proposal	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 17	

Incubation	

*	JEP	-	JDK	Enhancement-Proposal	

•  JEP	110	was	integrated	in	JDK	9.	
•  JDK	9	shipped	Sep	2017	
•  "Incubating	Feature”	

•  Module		jdk.incubator.httpclient
•  Package	jdk.incubator.http
•  Class jdk.incubator.http.HttpClient



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 18	

Incubation	

*	JEP	-	JDK	Enhancement-Proposal	

•  JEP	110	was	integrated	in	JDK	9.	
•  JDK	9	shipped	Sep	2017	
•  "Incubating	Feature”	

•  Module		jdk.incubator.httpclient
•  Package	jdk.incubator.http
•  Class jdk.incubator.http.HttpClient

•  Refreshed	in	JDK	10	
•  Improved	and	more	robust	implementation	
•  API	changes,	developer	feedback	and	additional	experience



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 19	

Standardization	

*	JEP	-	JDK	Enhancement-Proposal	

•  Standardized	in	Java	11,	JEP	321	
•  Module		java.net.http
•  Package	java.net.http
•  Class java.net.http.HttpClient

•  Incubating	version	completely	REMOVED



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 20	

Benefits	

*	JEP	-	JDK	Enhancement-Proposal	

JEP	110	Goals:	
•  Support	HTTP/2	
•  Provide	Asynchronous	API	
•  Modernized	API	(	using	newer	Java	APIs	and	language	

features	)	
•  Support	WebSocket	handshake	
•  …



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 21	

Benefits:	HTTP/2	

•  Header	Compression.	HTTP/2	uses	HPACK	compression,	which	
reduces	overhead.	

•  Single	Connection	to	the	server,	reduces	the	number	of	round	
trips	needed	to	set	up	multiple	TCP	connections.	

•  Multiplexing.	Multiple	requests	are	allowed	at	the	same	time,	
on	the	same	connection.	

•  Server	Push.	Additional	future	needed	resources	can	be	sent	
to	a	client.	

•  Binary	format.	More	compact.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 22	

Benefits:	HTTP/2	

Version	support	in	the	Java	HTTP	Client:	
•  HTTP/1.1	and	HTTP/2	
•  Prefers	HTTP/2,	by	default	

•  Tries	to	Upgrade	clear	text	requests	
•  Tries	to	negotiate	h2	in	the	ALPN	for	HTTP	over	TLS	

	(	TLS	1.3	support,	leverages	from	JDK	11	)	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 23	

Benefits:	Modernization	

•  Asynchronous	API		
•  java.util.concurrent.CompletableFuture

•  Follows	familiar	builder	style	
•  Immutable	types	
•  Reactive-Streams	based	body	processing	

•  java.util.concurrent.Flow.[Subscriber|Publisher]	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 24	

1.  Where	to	find	the	API?	

2.   How	to	send	a	request?	

3.   How	to	handle	request/response	body?	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 25	

HttpClient	

To	send	a	request,	first	create	an	HttpClient	from	its	builder.	
The	builder	can	be	used	to	configure	per-client	state,	like:	
•  The	preferred	protocol	version	(	HTTP/1.1	or	HTTP/2	)	
•  Whether	to	follow	redirects	
•  A	proxy	
•  An	authenticator	
•  A	connect	timeout	
•  ...



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 26	

HttpClient	

HttpClient client = HttpClient.newBuilder()  
  .version(Version.HTTP_2)  
  .followRedirects(Redirect.NORMAL)  
  .proxy(ProxySelector.of(new InetSocketAddress(”proxy”,80)))  
  .authenticator(Authenticator.getDefault())  
  .connectTimeout(Duration.ofSeconds(20))
  .build();  

Once	built,	an	HttpClient	can	be	used	to	send	multiple	requests.



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 27	

HttpRequest	

An	HttpRequest	is	created	from	its	builder.	
The	request	builder	can	be	used	to	set:	
•  the	request	URI	
•  the	request	method	(	GET,	PUT,	POST	)	
•  the	request	body	(	if	any	)	
•  a	request	timeout	
•  request	headers



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 28	

HttpRequest	

HttpRequest request = HttpRequest.newBuilder()  
    .uri(URI.create("http://openjdk.java.net/"))  
    .timeout(Duration.ofMinutes(1))  
    .header("Content-Type", "application/json")  
    .POST(BodyPublishers.ofFile(Paths.get("file.json")))  
    .build()

	
•  Once	built	an	HttpRequest	is	immutable,	and	can	be	sent	multiple	

times.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 29	

HttpResponse<T>	

interface HttpResponse<T> {
    int statusCode();
    HttpHeaders headers();
    T body();
    Version version();
    HttpRequest request();
    …
}

•  An	HttpResponse	is	not	created	directly,	but	rather	returned	as	a	
result	of	sending	an	HttpRequest.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 30	

Synchronous	or	Asynchronous	

•  Requests	can	be	sent	either	synchronously	or	asynchronously.	

•  The	synchronous	API,	as	expected,	blocks	until	the	
HttpResponse<#Body_Type#> is	available.	

•  The	asynchronous	API	returns	a	
CompletableFuture<HttpResponse<#Body_Type#>>



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 31	

Synchronous	

HttpResponse<String> response =
    client.send(request, BodyHandlers.ofString());  
System.out.println(response.statusCode());  
System.out.println(response.body());

•  BodyHandlers.ofString()	is	a	factory	that	creates	body	
handler	that	accumulates	the	response	body	bytes	and	returns	
them	as	a	String.



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 32	

Asynchronous	

client.sendAsync(request, BodyHandlers.ofString())  
    .thenApply(response -> {
          System.out.println(response.statusCode());  
          return response; } )  
    .thenApply(HttpResponse::body)  
    .thenAccept(System.out::println);

•  The	asynchronous	API	returns	immediately	with	a	CompletableFuture	
that	completes	with	the	HttpResponse	when	it	becomes	available.	
CompletableFuture	was	added	in	Java	8	and	supports	composable	
asynchronous	programming.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 33	

Asynchronous	

client.sendAsync(request, BodyHandlers.ofString())  
    .thenApply(response -> {
          System.out.println(response.statusCode());  
          return response; } )  
    .thenApply(HttpResponse::body)  
    .thenAccept(System.out::println);

•  The	asynchronous	API	returns	immediately	with	a	CompletableFuture	
that	completes	with	the	HttpResponse	when	it	becomes	available.	
CompletableFuture	was	added	in	Java	8	and	supports	composable	
asynchronous	programming.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 34	

Asynchronous	

client.sendAsync(request, BodyHandlers.ofString())  
    .thenApply(response -> {
          System.out.println(response.statusCode());  
          return response; } )  
    .thenApply(HttpResponse::body)  
    .thenAccept(System.out::println);

•  The	asynchronous	API	returns	immediately	with	a	CompletableFuture	
that	completes	with	the	HttpResponse	when	it	becomes	available.	
CompletableFuture	was	added	in	Java	8	and	supports	composable	
asynchronous	programming.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 35	

Asynchronous	

client.sendAsync(request, BodyHandlers.ofString())  
    .thenApply(response -> {
          System.out.println(response.statusCode());  
          return response; } )  
    .thenApply(HttpResponse::body)  
    .thenAccept(System.out::println);

•  The	asynchronous	API	returns	immediately	with	a	CompletableFuture	
that	completes	with	the	HttpResponse	when	it	becomes	available.	
CompletableFuture	was	added	in	Java	8	and	supports	composable	
asynchronous	programming.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 36	

	
Data	as	reactive-streams	

•  The	request	and	response	bodies	are	exposed	as	reactive	
streams	(	asynchronous	streams	of	data	with	non-blocking	
back	pressure.)	

•  The	HttpClient	is	effectively	a	Subscriber	of	request	body	
and	a	Publisher	of	response	body	bytes.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 37	

Classic	Producer-Consumer	

Producer Consumer

removes 
items

generates 
items

buffer size?



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 38	

	
Reactive-streams	(	40th	foot	view	)	

Producer Consumer

removes 
items

generates 
items



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 39	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Consumer

removes 
items

publishes 
items



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 40	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Subscriber

receives 
items

publishes 
items



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 41	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Subscriber

receives 
items

publishes
items

subscribe(subscriber)



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 42	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Subscriber

receives 
items

publishes 
items

onSubscribe(sub)

onNext(item)

onError(t)

onComplete

subscribe(subscriber)



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 43	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Subscriber

receives 
items

publishes 
items

onSubscribe(sub)

onNext(item)

onError(t)

onComplete

subscribe(subscriber)

subscribes



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 44	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Subscriber

receives 
items

publishes 
items

onSubscribe(sub)

onNext(item)

onError(t)

onComplete

subscribe(subscriber)

subscribes

subscription
subscription



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 45	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Subscriber

receives 
items

publishes 
items

onSubscribe(sub)

onNext(item)

onError(t)

onComplete

subscribe(subscriber) subscription



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 46	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Subscriber

receives 
items

publishes 
items

onSubscribe(sub)

onNext(item)

onError(t)

onComplete

subscribe(subscriber) subscription
request n items



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 47	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Subscriber

receives 
items

publishes 
items

onSubscribe(sub)

onNext(item)

onError(t)

onComplete

subscribe(subscriber) subscription
request n items

at most n items

1 ... ... n



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 48	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Subscriber

receives 
items

publishes 
items

onSubscribe(sub)

onNext(item)

onError(t)

onComplete

subscribe(subscriber) subscription



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 49	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Subscriber

receives 
items

publishes 
items

onSubscribe(sub)

onNext(item)

onError(t)

onComplete

subscribe(subscriber) subscription

publisher has no 
more items



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 50	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Subscriber

receives 
items

publishes 
items

onSubscribe(sub)

onNext(item)

onError(t)

onComplete

subscribe(subscriber) subscription



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 51	

	
Reactive-streams	(	40th	foot	view	)	

Publisher Subscriber

receives 
items

publishes 
items

onSubscribe(sub)

onNext(item)

onError(t)

onComplete

subscribe(subscriber) subscription

publisher has an 
error

Throwable t



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 52	

	
Data	as	reactive-streams	

•  The	request	and	response	bodies	are	exposed	as	reactive	
streams	(	asynchronous	streams	of	data	with	non-blocking	
back	pressure.)	

•  The	HttpClient	is	effectively	a	Subscriber	of	request	body	
and	a	Publisher	of	response	body	bytes.	

•  The	BodyHandler	interface	allows	inspection	of	the	response	
code	and	headers,	before	the	actual	response	body	is	
received,	and	is	responsible	for	creating	the	response	
BodySubscriber.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 53	

HttpRequest.BodyPublisher	

class HttpRequest {
    ...
    interface BodyPublisher
            extends Flow.Publisher<ByteBuffer> {
       long contentLength();
    }
}

•  converts	high-level	Java	objects	into	a	flow	of	byte	buffers	suitable	for	
sending	as	a	request	body	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 54	

HttpRequest.BodyPublishers	

Provides	a	number	of	convenience	factory	methods	for	creating	request	
publishers	for	handling	common	body	types	such	as	files,	Strings,	and	
bytes.	

•  BodyPubishers::ofByteArray(byte[])
•  BodyPubishers::ofByteArrays(Iterable<byte[]>)
•  BodyPubishers::ofFile(Path)
•  BodyPubishers::ofString(String)
•  BodyPubishers::ofInputStream(Supplier<InputStream>)
•  …	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 55	

HttpResponse.BodyHandler	

class HttpResponse<T> {
    ...
    interface ResponseInfo {
        int statusCode(); HttpHeaders headers(); ... }

    interface BodyHandler<T> {
        BodySubscriber<T> apply(ResponseInfo); }
}
•  Allows	inspection	of	the	response	code	and	headers,	before	the	actual	

response	body	is	received	
•  Responsible	for	creating	the	response	BodySubscriber.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 56	

HttpResponse.BodySubscriber	

class HttpResponse<T> {
    ...
    interface BodySubscriber<T>
        extends Flow.Subscriber<List<ByteBuffer>> {

        CompletionStage<T> getBody();
    }
}

•  consumes	response	body	bytes	and	converts	them	into	a	higher-level	
Java	type.	

	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 57	

HttpResponse.BodyHandlers	

Provides	a	number	of	convenience	factory	methods	for	handling	common	
response	body	types	such	as	files,	Strings,	and	bytes.	

•  BodyHandlers::ofByteArray()
•  BodyHandlers::ofFile()
•  BodyHandlers::ofString()
•  BodyHandlers::ofInputStream()
•  BodyHandlers::replacing(U replacementValue)
•  BodyHandlers::discarding()
•  BodyHandlers::buffering(...)
•  …	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 58	

Putting	it	all	together	

some	examples…	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 59	

Synchronous	Get	
Response	body	as	a	String	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 60	

Asynchronous	Get	
Response	body	as	a	String	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 61	

Asynchronous	Get	
Response	body	as	a	File	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 62	

JSON	Get	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 63	

Post	
A	request	body	can	be	supplied	by	an	HttpRequest.BodyPublisher.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 64	

JSON	Post	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 65	

Concurrent	Requests	
It's	easy	to	combine	Java	Streams	and	the	CompletableFuture	API	to	
issue	a	number	of	requests	and	await	their	responses.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 66	

Concurrent	Requests	
Sends	a	GET	request	for	each	of	the	URIs	in	the	list	and	stores	all	the	
responses	as	Strings.	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 67	

1.   How	to	write	a	custom	response	
BodySubscriber.	

2.   Interoperability	with	other	reactive	
streams	implementations.	

Handling	response	data	
	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 68	

Writing	a	custom	response	BodySubscriber	

demo	

https://www.youtube.com/watch?v=qiaC0QMLz5Y	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 69	

Interoperability	with	reactive	streams	
•  HttpResponse

•  BodySubscribers::fromSubscriber(Flow.Subscriber)
•  BodySubscribers::fromSubscriber(Flow.Subscriber,  
                                  Function finisher)
•  BodySubscribers::fromLineSubscriber(Flow.Subscriber)
•  BodySubscribers::fromLineSubscriber(Flow.Subscriber
                                      Function finisher)
•  BodySubscribers::ofPublisher()

•  HttpRequest
•  BodyPublishers::fromPublisher(Flow.Publisher)
•  BodyPublishers::fromPublisher(Flow.Publisher, long cl)



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 70	

Summary	

The	HTTP	Client	
•  Replacement	for	the	URLConnection	API	
•  Incubated	in	JDK	9;	Refreshed	in	JDK	10;	Standardized	in	Java	11	
•  Code	using	the	incubated	version	will	need	to	be	updated	a	little	

for	Java	11	(	jdk.incubator.http -> java.net.http )
•  Small	compact	API	
•  Uses	modern	Java	language	and	API	features,	

•  Generics,	lambdas,	CompletableFuture,	Reactive-streams	
•  Learned	about	how	reactive	streams	are	used	by	the	HTTP	Client	
•  Interoperability	with	existing	reactive	streams	implementations	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 71	

•  Download:	jdk.java.net	or	www.oracle.com/javadownload	

•  Join	the	OpenJDK:	openjdk.java.net		

•  Follow	us	on	Twitter:	@OpenJDK,	#Java,		
								or	at	my	twitter	handle	@chegar999	
	



Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.				 72	

References	

JEP	1	-	JDK	Enhancement-Proposal	-	https://openjdk.java.net/jeps/1	
JEP	11	-	Incubator	Modules	-	https://openjdk.java.net/jeps/11	
JEP	110	–	HTTP/2	Client	(Incubator)	-	https://openjdk.java.net/jeps/110		
JEP	321	–	HTTP	Client	(Standard	)	-	https://openjdk.java.net/jeps/321	
Java	HTTP	Client	-	https://openjdk.java.net/groups/net/httpclient/	




