
Distributed transactions
trade-offs

Artem Aliev

Huawei

Artem Aliev

• Huawei Cloud Hybrid Integration Platform
• Expert and solution architect

• 20+ years in Software Development
• Big data platforms integrations
• Apache Hadoop, Spark, Cassandra, TinkerPop
• Storage optimizations
• JVM development

• SpbU teacher

artem.aliev@gmail.com

mailto:artem.aliev@gmail.com

What is transaction

• Transfer many from Vasya to Petya
• update amount=amount+100 from customers where name = ‘Petya’
• update amount=amount-100 from customers where name = ‘Vasya’

• Bank state:
• select sum(amount) as total from customers

• Natural requirement:
• No money loose or stolen
• Vasya or any customer can not have negative amount
• Bank knows how much money it has: ‘total’ should be constant (consistent) if no

external transfers

• Transaction can be canceled (rollback) in case of …

Petya+100 Vasya-100

More formal: ACID properties

• Transaction is a single unit of logic or work, sometimes made up of multiple operations

• Atomicity
• Both p=p+100 and v=v-100, either happened or not
• If only first happened we get money from air

• Consistency
• Restrictions like constant total, amount >=0, are met at the end of transaction
• Transaction see only consistent state of the database in proper Isolation level

• Isolation
• Read uncommitted (no isolation)
• Read committed: You do not see partial results of other parallel transactions, till it committed
• Repeatable read
• Serializable (you can show order)

• Durability
• If transaction is reported to be committed, it will not be loosed by “any” failure in the future

External Consistency

• Simple Consistency:

• Transaction is visible for all participants after commit
• P: I have transferred you money. V: I do not see

• (Asynchronous synchronization is not allowed)

• System can not reorder transactions
• Money sent, start a production

• (Hidden channel of clients communication)
Petya+100 Vasya-100 Start

Start Petya+100 Vasya-100

Why
do you
start?

Petya+100 Vasya-100 Dasha+100 Petya-100

The last century architecture

The last century architecture (simplified)

Transaction Manager

APIs/Processors/Etc

Id Amount Time

Vasya 100 ..1ms

Vasya 0 ..2ms

Petya 100 ..2ms

Phone Id Time

+79… Vasya ..1ms

+11… Vasya ..2ms

+781… Petya ..2ms

TablesMulti
Version
Storage

Indexes

Commit log 4 55 43 3121 2

• Parallel transactions
• Topological order

• Single commit log!
• Serializable transactions

• External Consistency

• Multi Version tables
• Parallel transactions

• isolation

Transaction steps

• Start transaction (id, start time)

• Log start to Commit log

• Read Lock “P” row

• Read total

• Write Lock “P”

• Write new version of “P”

Petya+100 Vasya-100

• Read Lock “V” row

• Read total

• Write Lock “V”

• Write new version of “V”

• Check constrains and fail or continue

• Commit transaction
• Log finish in commit log
• Release locks
• New versions of data is visible

Continue

• independent transaction can run in parallel

• Seriliazability requirement is achieved by single Commit log (or
timestamp)

• Deadlock is possible (P->V, V->P or any other cycle)
• Different algorithms to solve them

• Example: wait and force rollback younger transaction. It restarts

select sum(amount) from customers

• Read lock ALL rows -> stop ALL write transactions
• Read, sum, release

• Read in the past
• Fix timestamp

• Wait till all transaction that starts before the timestamp finished

• Read values with time <= the timestamp

• Nor read lock for low isolation level reads

Let’s see how to hack the system

• If system does not support transactions we can stole money
• Consistency + isolation should be supported together

• T1:

• T2

• If system has no replication: (D)DoS the system
• High Availability or Fault Tolerance

• Durability
• Report transaction is OK

• Server dead => no clue about the transaction

Petya+100 Vasya-100

Petya-100Dasha+100

Replication for High Availability

Transaction Manager

APIs/Processors/Etc

Id Amount Time

Vasya 100 ..1ms

Vasya 0 ..2ms

Petya 100 ..2ms

Phone Id Time

+79… Vasya ..1ms

+11… Vasya ..2ms

+781… Petya ..2ms

TablesMulti
Version
Storage

Indexes

Commit log 4 55 43 3121 2 Replication Manager

Replication for High Availability

• No single point of failure

• Time to switch or Time to Recover

• Master->slave replication
• Split brain problem
• Resolve conflicts
• Still need external arbiter

• Asynchronous replication
• Commit log conflicts at restore
• Consistency is broken
• Hack the system: send all money, kill the main server, send all money again

• Synchronous replication  Distributed transactions

Modern databases is more like….

Replica Set and Quorum

• Split the brain: Let’s vote for the leader!

• Write to leader

• Leader store to quorum

• Read from leader or from quorum
Leader

Followers

Commit log replication Leader

• Paxos/RAFT leader election and commit log replication
• 100-300ms, up to 10 second time to Recover!

Google spanner

https://cloud.google.com/blog/topics/developers-practitioners/demystifying-cloud-spanner-multi-region-configurations

By the way

Leader:

Time is important!

• Select leader candidate with latest changes
• Quorum write guaranty we have at least one synchronized commit log in case

of 3

• Quorum read select latest version of the value

Leader:

Google Spanner write example

Spanner read Trade-off

No scalability?

• Client can directly read from replica quorum and select latest result
• Transactions? No.

• Consistent “read in the past”. Yes

• Client directly write to all replicas and wait for quorum replies
• No transactions

• Idempotent updates only! Allows retry.

• Example: vasya.total=vasya.total+100
• Some nodes update value but did not response in time.

• Retry?

• 200, 100, 0 on different nodes ;)

More scalability: Sharding/Partitioning

• For “linear” scalability

• The same as a set of independent databases

• Sharding rules can be applied on client or on transaction coordinator

• No scalability with single global transaction coordinator

Vasya dataPetya data ….

2 phase commit (last century)

• Prepare stage
• Lock data cells at first stage

• Select max timestamp

• If ok, send commit message
• With max timestamp

• (lamport clocks)

• Participants
• Increase local timestamp to max

• Commit with the timestamp

2 phase transactions

• What if coordinator fail in the middle of decision phase?
• Locks, time outs

• Temporary inconsistent data (if no common clock)

• Coordinator should be in replica set!

• Scale coordinators
• More then one commit log

• How to get serializability?

• 2 phase transactions problems examples

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/configure-availability-group-for-distributed-transactions?view=sql-server-ver15&viewFallbackFrom=sql-server-ver17

2 phase transactions

• What if coordinator fail in the middle of decision phase?
• Locks, time outs

• Temporary inconsistent data (if no common clock)

• Coordinator should be in replica set!

• Scale coordinators
• More then one commit log

• How to get serializability?

• 2 phase transactions problems examples

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/configure-availability-group-for-distributed-transactions?view=sql-server-ver15&viewFallbackFrom=sql-server-ver17

3 Phase commit ;)

Synchronized time

• Need monolithic increasing values
• Causality, Time and Happens-Before

• Global order of transactions

• Consistent reads

• We can not use server or client time in distributed system

Petya+100 Vasya-100 Start

Client time: 10 Client time: 20

S1 t: 11 S2 t: 9 S3 t: 1!

Common clock implementations

• Logical clock (lamport, vector…)
• Partial order
• Too many messages

• TrueTime
• Spanner attempt to synchronize server clocks
• Use commit timeouts to make sure you get proper order of transactions
• Best solution for geo distributed databases

• Hybrid clocks
• Base on server clock
• Additional counter to get unique order value
• Limited number of message to get correct value

• Single timestamp oracle (server)
• Surprisely fast solution for local networks

Start Petya+100 Vasya-100

Why
you
start

?

http://users.ece.utexas.edu/~garg/pdslab/david/hybrid-time-tech-report-01.pdf
http://users.ece.utexas.edu/~garg/pdslab/david/hybrid-time-tech-report-01.pdf

Modern databases is more like….

Partitions
R

ep
lic

a
se

t

Clock

Distributed transactions trade offs

• A lot of DB does not support distributed transactions!
• “Single partition key transaction”

• Lightweight transaction (CAS)

• “Single server/replica group transactions”
• Adopt your partition key

• No global indexes (required transactions)
• Each node contains local index, index base request is sent to all partitions

• Use 2ph commits without global clock
• Temporary no consistency

• No isolation

Distributed transactions trade offs

• A lot of DB does not support distributed transactions
• “Single partition key transaction”

• Lightweight transaction (CAS)

• “Single server/replica group transactions”
• Adopt your partition key

• No global indexes (required transactions)
• Each node contains local index, index base request is sent to all partitions

• Use 2ph commits without global clock
• Temporary no consistency

• No isolation

CAP theorem

CAP theorem

• Not about transactions!
• Atomic register read/write only

• Consistency means linearizability
• Not serializability consistency level

• Partition tolerance
• Loose connectivity or packages among some part of the distributed system

• for example connection between Master and Slave: split brain

CAP theorem

• Not about transactions!
• Atomic register read/write only

• Consistency means linearizability
• Not serializability consistency level

• Partition tolerance
• Loose connectivity or packages among some part of the distributed system

• for example connection between Master and Slave: split brain

PACELC – not a theorem

• Partitioned?
• Availability

• Consistency

• Else (normal work)
• Latency

• Consistency

Read documentation!

• Most of databases can be tuned for different trade off
• Check you requirements

• Properly select configuration

• Do not blindly trust benchmark
• Read configuration they used

• If you need transaction, expect much slower results

