Distributed transactions
trade-offs

Artem Aliev

Huawei

Artem Aliev

 Huawei Cloud Hybrid Integration Platform
* Expert and solution architect

e 20+ years in Software Development
* Big data platforms integrations
* Apache Hadoop, Spark, Cassandra, TinkerPop
* Storage optimizations
* JVM development

* SpbU teacher

BN

R

artem.aliev@gmail.com

mailto:artem.aliev@gmail.com

What is transaction

Vasya-100

* Transfer many from Vasya to Petya
e update amount=amount+100 from customers where name = ‘Petya’
e update amount=amount-100 from customers where name = ‘Vasya’

* Bank state:
e select sum(amount) as total from customers

* Natural requirement:
* No money loose or stolen
* Vasya or any customer can not have negative amount

* Bank knows how much money it has: ‘total’ should be constant (consistent) if no
external transfers

* Transaction can be canceled (rollback) in case of ...

More formal: ACID properties

Transaction is a single unit of logic or work, sometimes made up of multiple operations

Atomicity
e Both p=p+100 and v=v-100, either happened or not
* If only first happened we get money from air

Consistency
* Restrictions like constant total, amount >=0, are met at the end of transaction
* Transaction see only consistent state of the database in proper Isolation level

Isolation
* Read uncommitted (no isolation)
* Read committed: You do not see partial results of other parallel transactions, till it committed
* Repeatable read
 Serializable (you can show order)

Durability
* |f transaction is reported to be committed, it will not be loosed by “any” failure in the future

External Consistency

* Slmple Con5|stency: Petya+100 Vasya-100 Dasha+100 Petya-100

* Transaction is visible for all participants after commit
e P: | have transferred you money. V: | do not see
* (Asynchronous synchronization is not allowed)

e System can not reorder transactions
* Money sent, start a production
e (Hidden channel of clients communication)

Petya+100 Vasya-100

Why
do you
start?

Petya+100 Vasya-100

The last century architecture

wWEWo

DBA

v

Database Schema

v

DDL Compiler

Application
Usirs Programs
Queries Application
Programs
Query Processor |g———3| DML Compiler

_____*____

Data Dictionary

Authorization

a— ! Coitrol Database Manager
Query Optimizer command le——>| integrity Checker
¢ !
Scheduler |(_) Tr;';izggsn
v I
iﬂe;r?:;g |(—) Buffer Manager M:nairger

Text ‘

Data Files

Data chtlonary

The last century architecture (simplified)

Commit log)

Multi
Version
Storage

APIs/Processors/Etc

Transaction Manager

[Tables Indexes \
Vasya 100 ..1ms +79... Vasya ..Ims
Vasya 0 ..2ms +11... Vasya ..2ms
Petya 100 ..2ms +781... Petya ..2ms

* Parallel transactions
* Topological order

* Single commit log!
 Serializable transactions
* External Consistency

 Multi Version tables
e Parallel transactions
* isolation

Transaction steps

e Start transaction (id, start time) * Read Lock “V” row

* Log start to Commit log * Read total
* Write Lock “V”

 Write new version of “V”

 Read Lock “P” row

* Read total _ . _
* Check constrains and fail or continue

* Write Lock “P” _ .
, , Y * Commit transaction
* Write new version of “P * Log finish in commit log

 Release locks
* New versions of data is visible

Continue

* independent transaction can run in parallel

* Seriliazability requirement is achieved by single Commit log (or
timestamp)

* Deadlock is possible (P->V, V->P or any other cycle)

» Different algorithms to solve them
 Example: wait and force rollback younger transaction. It restarts

select sum(amount) from customers

* Read lock ALL rows -> stop ALL write transactions
* Read, sum, release

* Read in the past
* Fix timestamp
* Wait till all transaction that starts before the timestamp finished
* Read values with time <= the timestamp
* Nor read lock for low isolation level reads

Let’s see how to hack the system

* |f system does not support transactions we can stole money

* Consistency + isolation should be supported together
. T1.

e T2 Dasha+100 = Petya-100

e If system has no replication: (D)DoS the system
* High Availability or Fault Tolerance

e Durability

* Report transaction is OK
e Server dead => no clue about the transaction

Replication for High Availability

APIs/Processors/Etc

APIs/Processors/Etc

Transaction Manager

Commit log Replication Manager
Multi [Tables Indexes \
Version | [EREIEEH T [T
StO ra ge Vasya 100 ..Ims +79... Vasya ..Ims
Vasya 0 ..2ms +11... Vasya ..2ms
Petya 100 ..2ms +781... Petya ..2ms

\- J

Replication for High Availability

* No single point of failure
* Time to switch or Time to Recover

* Master->slave replication
* Split brain problem
* Resolve conflicts
 Still need external arbiter

* Asynchronous replication
 Commit log conflicts at restore
e Consistency is broken
* Hack the system: send all money, kill the main server, send all money again

» Synchronous replication = Distributed transactions

Modern databases is more like

Replica Set and Quorum

* Split the brain: Let’s vote for the leader!

APIs/Processors/Etc

 Write to leader

* Leader store to quorum Leader [—""“mm —

etya 100 2ms

* Read from leader or from quorum

APIs/Processors/Etc

APIs/Processors/Etc

Tables Indexes
Followers e

Vasya o .2ms +11.. Vasya L2ms

Petya 100 2ms 4781, Petya .2ms

a 100 2ms

Tables Indexes
Vasya 100 .Ams 478 Vasya Ams
Vasya 0 .2ms +11.. Vasya L2ms

Commit log replication Leader

* Paxos/RAFT leader election and commit log replication
e 100-300ms, up to 10 second time to Recover!

Google spanner

Handling region failure
If the preferred leader region fails or becomes unavailable, Cloud Spanner moves the

leaders to another region. There could be a delay of a few seconds (less than 10
seconds) for Cloud Spanner to detect that the leader is no longer available and elect a

new leader. During this time, applications could see higher read and write latencies.

https://cloud.google.com/blog/topics/developers-practitioners/demystifying-cloud-spanner-multi-region-configurations

By the way

APIs/Processors/Etc

Transaction Manar .«

Leader:

APIs/Processors/Etc

APIs/Processors/Etc
Transaction Manager

Transaction Manager

Tables Indexes

_mm m_m Tables Indexes
vasya 100 .ims +79... Vasya .ims
. e 2o e e e -mm m_m
Petya 100
vasya 100 .ims +79.. Vasya .dms

2ms +781.. Petya .2ms

Vasya 0 .ams +11. Vasya 2ms

Petya 100 2ms 4781 Petya .ams

Time is important!

* Select leader candidate with latest changes

* Quorum write guaranty we have at least one synchronized commit log in case
of 3

e Quorum read select latest version of the value

Google Spanner write example

Spanner read Trade-off

Serve read
Stale read

Strong read Cc:nﬁrm
that it has
latest data

Serve read

No scalability?

e Client can directly read from replica quorum and select latest result
* Transactions? No.
* Consistent “read in the past”. Yes

* Client directly write to all replicas and wait for quorum replies
* No transactions
* I[dempotent updates only! Allows retry.

* Example: vasya.total=vasya.total+100
* Some nodes update value but did not response in time.
* Retry?
e 200, 100, 0 on different nodes ;)

More scalability: Sharding/Partitioning

* For “linear” scalability

* The same as a set of independent databases

* Sharding rules can be applied on client or on transaction coordinator

* No scalability with single global transaction coordinator

Petya data

Vasya data l

APIs/Processors/Etc

2ms

Tables Indexes Tables Indexes
Vasya 100 1ms 479. Vawa .ims vasya 100 Ams 478 Vasya .ims
Vasya 0 w2ms +11... Vasya .2ms Vasya o +11... Vasya 2ms

2 phase commit (last century)

* Prepare stage ¢

* Lock data cells at first stage Coordinator Participant
* Select max timestamp Prepare (vote request)

\

* If ok, send commit message
* With max timestamp
 (lamport clocks)

asyed
UO0I103||00 810/

* Participants
* Increase local timestamp to n
 Commit with the timestamp

&

ck

Q
>
aseyd uoisina

End

2 phase transactions

* What if coordinator fail in the middle of decision phase?
* Locks, time outs
 Temporary inconsistent data (if no common clock)

* Coordinator should be in replica set!

e Scale coordinators
* More then one commit log
* How to get serializability? i 1 oIS Gl s 1 AR D (55

not match the RMID [XXXXXXXX = XXXX = X XXX = XXXX - XXXXXXXXXXXX]
associated with the transaction. Please manua 11y resolve

* 2 phase transactions problems examples s

SQL Server detected a DTC/KTM in-doubt transaction with UOW

{yyyyyyyy-yyyy-yyyy-yyyy-yyyyyyyyyyyy}.please resolve it
following the guideline for Troubleshooting DTC Transactions.

The new SQL Server error log has an entry like the following example:

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/configure-availability-group-for-distributed-transactions?view=sql-server-ver15&viewFallbackFrom=sql-server-ver17

2 phase transactions

* What if coordinator fail in the middle of decision phase?

* Locks, time outs
 Temporary inconsistent data (if no common clock)

* Coordinator should be in replica set!

 Scale coordinators
* More then one commit log
* How to get serializability?

* 2 phase transactions problems examples

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/configure-availability-group-for-distributed-transactions?view=sql-server-ver15&viewFallbackFrom=sql-server-ver17

3 Phase commit ;)

I
Coordinator Participant JJ

w;

4"%//’,’///,:”

11
1

asyed
UO0I199(|02 810A

aseyd
uoleuIwassIq

aseyd uois|oa(g

End

Synchronized time

* Need monolithic increasing values
e Causality, Time and Happens-Before
* Global order of transactions
* Consistent reads

* We can not use server or client time in distributed system
Client time: 10 Client time: 20

Petya+100 Vasya-100

S1t:11 S2t:9 S3t:1!

. R e No Consistency - In this mode there are no exter-
nal consistency guarantees, transactions are assigned
COI I II I Ion ClOCk II I I |el I Ientatlons timestamps from each server’s physical clock and no
guarantee is made that reads are consistent or repeat-
able.

e HybridTime Consistency - In this mode our imple-
mentation guarantees the global consistency as Span-
ner, absent hidden channels, but using HybridTime in-
stead of commit-wait. Clients choosing this consis-
tency mode on writes must make sure that the times-
tamp that is received from the server is propagated to

Logical clock (lamport, vector...)

e Partial order
other servers and/or clients. Within the same client
Vasya-100 process, timestamps are automatically propagated on
behalf of the user. If there are hidden channels, i.e.

* Too many messages
* TrueTime read without (e imestar being propagated, hre
no guarantee of external consistency.
e Spanner attempt to synchronize server clocks s £ 2 - |
o Commit-wait Consistency - In this mode our imple-
e Use commit timeouts to make sure you get proper order of trang menttion suarantces the same external consistency

semantics as Spanner by also using commit-wait in the

* Best solution for geo distributed databases way desibed inthe orginal paper. However nstead

of using TrueTime, which is a proprietary and pri-

* Hybrid clocks
* Base on server clock
* Additional counter to get unique order value
* Limited number of message to get correct value

([J

Single timestamp oracle (server)
e Surprisely fast solution for local networks

http://users.ece.utexas.edu/~garg/pdslab/david/hybrid-time-tech-report-01.pdf
http://users.ece.utexas.edu/~garg/pdslab/david/hybrid-time-tech-report-01.pdf

Modern databases is more like

itions

Part

Distributed transactions trade offs

* A lot of DB does not support distributed transactions!

e “Single partition key transaction”
 Lightweight transaction (CAS)

* “Single server/replica group transactions”
* Adopt your partition key

* No global indexes (required transactions)
* Each node contains local index, index base request is sent to all partitions

* Use 2ph commits without global clock

 Temporary no consistency
* No isolation

Distributed transactions trade offs

* A lot of DB does not support distributed transactions

e “Single partition key transaction”
 Lightweight transaction (CAS)

* “Single server/replica group transactions”
* Adopt your partition key

* No global indexes (required transactions)
* Each node contains local index, index base request is sent to all partitions

* Use 2ph commits without global clock

 Temporary no consistency
* No isolation

CAP theorem

Consistency

CA Category
Network problem might
stop the system.
Ex: RDBMS (Oracle, QL Server, MySQL)

CP Category
There is a risk of some data
becoming unavailable.
Ex: MongoDB, Hbase, Memcache
BigTable , Redis

Pick two

Partition
Tolerance

A | Availability
AP Category

Clients may read inconsistent data
Ex: Cassandra, RIAK, CouchDB

CAP theorem

Consistency

CP Category CA Category

* Not about transactions! o
R . . Ex: MongoDB, Hbase, Memcache Ex: RDBMS (Oracle, 5L Server, MysQL)
* Atomic register read/write only

* Consistency means linearizability
* Not serializability consistency level Clnts may read inconsstent dta

Ex: Cassandra, RIAK, CouchDB

A) Availability

* Partition tolerance
* Loose connectivity or packages among some part of the distributed system
» for example connection between Master and Slave: split brain

CAP theorem

Consistency

CA Category
Network problem might
stop the system.
Ex: RDBMS (Oracle, QL Server, MySQL)

CP Category

* Not about transactions!

becoming unavailable.
Ex: MongoDB, Hbase, Memcache

* Atomic register read/write only

Partition

* Consistency means linearizability
* Not serializability consistency level D™ . W

Ex: Cassandra, RIAK, CouchDB

A | Availability

* Partition tolerance
* Loose connectivity or packages among some part of the distributed system
» for example connection between Master and Slave: split brain

PACELC — not a theorem

e Partitioned?

DDBS P+A |P+C E+L E+C
* Availability BigTable/HBase v Vs
* Consistency Cassandra v/ v
Cosmos DB JS L [b]
 Else (normal work) oot T
¢ LatenCV DynamoDB Ve s
* Consistency FaunaDBIe! VA R
_ Hazelcast IMDGDPI®l | | v | « |
He™,
<— partition? —— P } else > Megastore 7 7
\- > MongoDB S v
/ \\ \ MySQL Cluster v v
- o PNUTS | 7
\ g \ e W g
‘. [B3 1T4f0 Riak / e
/ \ / \—-/ \/ VoltDB/H-Store V4 v

Read documentation!

* Most of databases can be tuned for different trade off
e Check you requirements
* Properly select configuration

* Do not blindly trust benchmark

* Read configuration they used
* If you need transaction, expect much slower results

