

## Ultra-low latency streaming. In pursuit for the perfect video delivery.



#### **Chernikov Kirill**

Head of the VK Play Cloud Client Development Team



#### About team and project

In cloud gaming development since 2013

3-6 members in development team











## What is ultra-low latency streaming?

#### **Application type**

Downloading media content

Video on demand (VOD)

Video calls

Real-time control applications (ultra-low latency applications)



#### Any

1-10 sec.

< 500 ms.

<100 ms. (50-70 ms.)





### What is the perfect video delivery?

Of Minimum possible delay 022 Target video birtate or maximum possible bitrate 03 Nodecoding

problems









## Video, network and key stages





## Network bandwidth (NB) estimation

– NB1 sec. base, Mbit/s. – NB 200 ms. base, Mbit/s. – NB 40 ms. base, Mbit/s.



Time, ms.



## Methods of dealing with network problems

#### **ABR** (adaptive bitrate algorithm)

- Network bandwidth estimation
- Video sending management

#### **BBR (bottleneck bandwidth and RTT)**

- Network buffering estimation
- Network packets losses prediction



Reducing the peak load on the network

See for details VideoTech 2022: Ultra-low latency. Принципы и механизмы передачи видео в Cloud Gaming





## Methods of dealing with network problems





- Reducing the peak load on the network
- Video sending management



Recovery of network packets losses

#### Network packets retransmit 6

• Recovery of network packets losses

See for details VideoTech 2022: Ultra-low latency. Принципы и механизмы передачи видео в Cloud Gaming













#### Average network and video bitrates



Network bitrate Video bitrate



11









## Main key metric





#### ABR + FEC

#### Daily percent of unassembled frames



### Second key metric



(>10 for 30 seconds)



### Suggestions for improvement

Of Problem situation memory mechanism (BBR + ABR)

## 02 Problem ranking (BBR)





## BBR. Network buffering







RTT, ms. • RTTshort, ms. • RTTlong, ms.





#### **BBR. Problem ranking**





RTT, ms. • RTTshort, ms. • RTTlong, ms.





## **BBR. Memory mechanism**



Time, ms.



## **ABR. Memory mechanism**







### **Results of improvements**

#### After release:

- Unassembled frames = ~0,06-0,07% (from 0,08%-0,12%)

#### **3 weeks after release:**

- Unassembled frames = ~0,08-0,1%
- -Sessions with «large» number of unassembled frames =  $\sim 32-34\%$



## • Sessions with «large» number of unassembled frames = $\sim 26-28\%$ (from 30%)





Errors in calculations and implementation

 $\mathbf{02}$ 





#### Users behavior has changed



**Our metrics** doesn't work correctly







### Play time in sessions

Minutes





Play time without "large" number of unassembled frames, %

#### Average session length



## Play time in sessions

#### Sessions count percent



Play time without "large" number of unassembled frames, %

#### Total sessions count percent



#### Users behaviour

Percent, %





#### Percent of total unassembled frames

Top sessions count



#### Top 20 sessions



#### 80%

#### Manual bitrate setting (set too high bitrate)

#### **Unassembled frames reasons**



#### Very low and not uniform throughput





#### Answers for «Why?»

Our main and second key metrics need to be corrected

02User behavior

## has really changed



The proposed algorithms work, but they do not take into account the subjective perception of the user





### Metrics in NIC context

|                                        | Native               | Wi-Fi               | Cellular          |
|----------------------------------------|----------------------|---------------------|-------------------|
| Unassembled frames                     | ~0,06-0,08%          | ~0,08-0,1%          | ~0,4-0,45%        |
| Recovery percentage<br>of lost packets | ~80-85%              | ~80-85%             | ~45-50%           |
| Average RTT                            | ~15 ms.              | ~23-24 ms.          | ~90 ms.           |
| Average network<br>and video bitrates  | ~22,5 and 16 Mbit/s. | ~17 and 9,5 Mbit/s. | ~4 and 2,5 Mbit/s |





## WebRTC (from box) vs Native solution

|                         | Native      | WebRTC        |
|-------------------------|-------------|---------------|
| Unassembled frames      | ~0,08-0,1%  | ~1-2%         |
| Average RTT             | ~20 ms.     | ~40-45 ms.    |
| Average network bitrate | ~20 Mbit/s. | ~16,5 Mbit/s. |





#### Conclusions

Of ABR should take into account the subjective perception of the user (perception factor of «broken» stream) Working<br/>requires<br/>of ABR

## Working via cellular requires adaptation



WebRTC (from box) not suitable for ultra-low latency applications







# Thanks for your attention!



#### Chernikov Kirill

Head of the VK Play Cloud Client Development Team k.chernikov@corp.mail.ru

