DotNext
2024 *

Building Multi-Tenant

ASP.NET Core Applications

Alper Ebicoglu
Co-Founder of Volosoft
alper.ebicoglu@volosoft.com
twitter.com/alperebicoglu

Presenter Notes
Presentation Notes
Ladies and gentlemen welcome to the multi-tenancy session.
Thank you for joining me today.

My name is Alper, and I'm one of the co-founders of Volosoft.
Our company that has been empowering .NET developers by creating frameworks and simplifying the complexities of software development,
allowing you to focus on your business.

One of our flagship projects is the ABP Framework, a powerful framework that implements many cross cutting concerns of a web app.
Today, I will share my experiences and insights I've gained while implementing major multi-tenancy requirements.

| ASP.NET]
AL . Open-source Framework on ASP.NET (ere

L]
= O aspnetboilerplate / aspnetboilerplate Q. Type[/] to search > = ® I &8 Q

Jep aspnetbc“erplate Public ﬁ Edit Pins = & Unwatch 791 - ? Fork 3.7k - Starred 11.8k -

{» Code G'l lssues 213 i1 Pull requests 7 () Discussions @ Actions @ Security |~ Insights E:?:i Settings

Pulse Aug 18, 2013 — Mar 12, 2024 Contributions: Commits +

Contributors Mol ; .
Contributions to dev, excluding merge commits

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Community

Community Standards

foundation

Presenter Notes
Presentation Notes
I want to mention to you about our first open-source web application framework.
It’s called ASP.NET Boilerplate
We started this project in 2013 (twenty thirteen).
We have released 234 versions so far.
It has almost 12K stars on GitHub which is amazing for a .NET repo.

@ QDP.O Open-source Framework on ASP.NET (ere

@
= o abpframework / abp Q Type | /] to search p @ 11 & a
@ abp Public R EditPins v ©Watch 335 ~ Y Fork 31k~ Starred 127k
<> Code (@ lssues 455 Il Pullrequests 32 D Discussions (&) Actions [Projects 2 @ Security 362 |~ Insights 8 Settings

e Dec 4, 2016 — Mar 12, 2024

Releases 217

© 83.0 (Latest)

3 hours ago

| Contributors Contributions to dev, line counts have been omitted because commit count exceeds 10,000,

‘B nuget Packages Upload

Search for packages... P

+ 216 releases

Downloads

@ Volo.Abp.Core o0+ ol 27.1M

MET Standard 2.0 Current version 23.TK

Per day average 12K

Presenter Notes
Presentation Notes
how we solved some real problem multi-tenancy issues.

After ASP.NET Boilerplate we started writing ABP Framework which is fully modular, multi-tenant and microservice compatible.
It has been developed as open source since 2016 (twenty sixteen). ️
We have released 173 versions so far.
It has 12K stars on GitHub
And over 27 million downloads on NuGet until now.

Why I’m showing this to you, because we have a good experience of modular application development, microservice architecture, DDD and multi-tenancy.
In the next slides, I’ll share you how we solved some real problem multi-tenancy issues.

What is ABP Framework?

Your Application

@ ABP Web Framework

do what you do best

m ASP.NET Core Web Framework

Multi-tenancy
Audit logging
Exception handling
Background jobs
Modularity

Event bus

Unit of work

etc...

Routing

Dependency injection
Session management
Request / response
Security

etc...

Presenter Notes
Presentation Notes
Raw ASP.NET Core is Generic and provides essential features.
ABP provides enterprise software solution features.
CROSS CUTTING CONCERNS (ex handling, caching, localization, validation, transaction management, social media logins, forgot password)
You can focus on your business logic.

ABP Framework offers an opinionated architecture to build enterprise software solutions with the best practices.
And it’s built on top of .NET and the ASP.NET Core platforms.

On the ground level, there’s raw ASP.NET Core and next level our framework comes up with all kinds of generic features that a line-of-business app should have, and on the roof level you write your custom business code.
You don’t worry about multi-tenancy and all its challenges.

I’ll explain our solutions and experiences on creating a multi-tenant application framework.

Agenda

* Introduction to SaaS & Multi-Tenancy

* Pros and Cons of Multi-Tenancy

* Database & Deployment Scenarios

* [dentifying and Changing the Active Tenant
 Data Isolation

« Conditionally Turning Multi-Tenancy On / Off
- Handling Database Migrations

* Do You Need Multi-Tenancy?

® abpio

What is Multi-Tenancy?

A common approach to build Saa$S solutions
« Resources are shared between tenants
* Application data is isolated between tenants

= Tenants: Our clients, using the service
= Host: Service provider

Parties

An ideal multi-tenant application should be
v Unaware of multi-tenancy as much as possible!
v’ Deployable to on-premise as well

® abpio

Presenter Notes
Presentation Notes
Architectural approach to build SaaS
Hardware + Software resources shared btw tenants.
Tenant's data and configurations are logically or physically separated.
Tenants: Customers --- Host: Solution owner
Unaware of multi-tenancy :
 Multi-tenancy system should be designed to work seamlessly and make your application code multi-tenancy unaware as much as possible.
---- You shouldn’t pass TenantId to all your controllers, application services, repositories or domain services…
---- Do all tenancy related stuff in a low level layer and keep your business code clean as much as possible.

When you want to build a solution, you need to deal first with multi-tenancy.
Different cloud customers access the same resources..
So each client operates within its isolated environment, unaware of the existence of other tenants.

Their application data is physically or virtually isolated.
There are 2 parties in this scenario: Tenants and Host.
Tenants are our customers and the host is the owner of the platform that develops, maintains, and offers the software to customers.

—

Ideally, your application code should not be aware of multi-tenancy related code.
What I mean is, you shouldn’t pass TenantId to all your controllers, application services, repositories or domain services…
Do all tenancy related stuff in a low level layer and keep your business code clean as much as possible.

And also, when a customer wants to setup your solution to his own servers, you should be doing that without any code changes.

As-a-Service Business Models

.

On Premises

Infrastructure

as a Service

Platform

asa Service

Software

asa Service

Applications
Data
Runtime
Middleware
Operating System
Virtualisation
Servers
Storage

Networking

Applications
Data
Runtime
Middleware
Operating System
Virtualisation
Servers
Storage

Networking

Applications

Data

Middleware
Operating System
Virtualisation
Servers
Storage

Networking

Applications

Data

Middleware
Operating System
Virtualisation
Servers
Storage

Networking

You manage

3rd Party
Manages

Presenter Notes
Presentation Notes
2- Infrastructure as a Service: Google Compute Engine, Azure Virtual Machines
3- Platform as a Service: Azure App Service, Heroku, Google App Engine
4- Software as a Service: Discord, Zoom, Gmail, Netflix

On Premises: "on-prem" is installed and runs on computers on the premises of the organization using the software, rather than at a remote facility.
Infrastructure as a Service Customers with access to computing resources, like servers, storage, and networking. It allows users to rent these resources on a pay-as-you-go basis, so they don't need to invest in hardware or software upfront. IaaS customers have full control over the virtual machines and can install and configure their own software and applications.
Platform as a Service Customers can develop, run, and manage web applications without having to worry about the underlying infrastructure. PaaS provides customers a platform to build and deploy applications quickly and easily.
Software as a Service SaaS is a cloud computing model in which software applications are hosted on a remote server, and customers access them through a web browser. SaaS eliminates the need for customers to install and manage the software on their own systems.

Advantages of Multi-Tenancy

Cost efficiency — max utilization
Consistent user experience
Ease of maintenance

. Scalablility
Rapid deployment for new users

® abpio

Presenter Notes
Presentation Notes
Cost Efficiency: You share the hardware and software among customers, you reduce costs and serve the maximum number of customers.
Consistent User Experience: All our customers use the latest version. So we as developers can focus on maintaining a single codebase, ensuring that all tenants receive updates and improvements at the same time.
Ease of maintenance: Maintaining a single codebase and infrastructure for all tenants simplifies software updates, patches, and bug fixes. It reduces the complexity of managing multiple instances, making it easier for developers and administrators to maintain the system.
Scalability: When there are demand spikes, you can easily increase system resources. You can add extra servers behind your load balancer. This way, you can serve more customers.. This leads to better resource utilization and responsiveness to demand spikes. But if it was an on premise system, then it would hard to increase the resources of each tenant.
Ease of Deployment: New tenants can be onboarded quickly within the existing infrastructure, you don’t need to set up a new environment for the new client. When a new tenant comes, you just add a new line into your Tenants table.

Challenges of Multi-Tenancy

Data isolation
. Configuration & customization per tenant

Performance balance: Noisy neighbors!

. Security
Backup and recovery

® abpio

Presenter Notes
Presentation Notes
Data isolation: Ensuring proper data isolation btw tenants to prevent unauthorized access to sensitive information
Customization and configuration: Your clients request to customize the application according to their requirements. They want to make rebranding and customize the UI, logo, colors. Managing different configurations and customizations for each tenant without compromising the core architecture can be challenging.
Performance balance: some customers may use the system extensively We can call this “Noisy neighbors“. Some tenants can consume too much resources. We should ensure that the resource usage of one tenant does not negatively impact the performance of other. This should be done by monitoring the system.
Security: When a hacker gets into your server he can steal all your client data. Also if you have a security hole, a tenant can gain access to other tenant’s data.
Backup and recovery: This involves database and storage backup per tenant. It will be very easy to backup/restore when you have a separate DB for each tenant, but if you have a shared DB then you need to get backup of the specific tenant. And tenants may have different retention policies, so you need to implement different strategies for each tenant. Government agencies + banks

Deployment & Database Architectures

Separate application, Shared application, Shared application,
sgparate gg,abase separate database shared database

e :

" (5 S
DB

Y - \..,____________,/ e~ N, —

| e |
o . = —_—
—DPR_

Presenter Notes
Presentation Notes
1-) on-premises deployment. Not a SaaS friendly architecture
2-) Not good for resource utilization => Migrating databases at the same time!
3-) SaaS friendly + Max Utilization + Customers will ask you to separate their DB (banks, government agencies)
4-) covers all kinds of requirements. If pays more separate DB.

There are 4 scenarios of the application and DB deployments.
This one looks like on-premises deployment. Each client has its own web app and database. Not a SaaS friendly architecture.
This is better than the first one. All the clients shares the same application but uses separate DBs. Not good for resource utilization. Because you need to maintain / update schemas of the databases.
This one is the ideal one. Everyone uses the same app and the same DB. Minimum cost with maximum client coverage. The downside of this approach is; some customers might have excessive data and consume resources much more than others. Also according to some GDPR rules, some clients may want to locate the DB in their country like banks. Therefore you need to separate those DBs.
Last one covers all kinds of challenges. You can provide separate DB if a client pays more or locate their data in a different geo-location. On the other hand, small clients can share the same DB.

Maintaining Application States

Application code & services should be stateless!

Where should we save the state? €9

v' HTTP Request (cookie, header, query string, payload)
v' Authentication ticket

v Database

v Distributed cache (Redis, Memcached, ...)

® abpio

Presenter Notes
Presentation Notes
A stateless application doesn’t save any client session (state) data on the server like TenantId.
And HTTP is a stateless protocol. This means that user data is not persisted from one web page to the next.
Our multi-tenant application should also be stateless.
Besides, the Stateless approach is multi-thread friendly!
Then where should we save the state?
In HTTP Requests, Authentication tickets as in JWT, DB, Distributed caches like Redis.

|ldentifying the Active Tenant

Presenter Notes
Presentation Notes
So far I gave you some general information about multi-tenancy.
Now let’s see some code and real-world solutions

|ldentifying the Active Tenant

How to determine the current tenant? €

. CurrentUserTenantResolveContributor
. QueryStringTenantResolveContributor
. RouteTenantResolveContributor
. HeaderTenantResolveContributor
. CookieTenantResolveContributor
. DomainTenantResolver

® abpio

Presenter Notes
Presentation Notes
When a user makes a request to the application, you need to understand Which tenant's user is this user?
There are 6 ways of finding the current/active tenant in our implementation.

ldentifying the Active Tenant
1. Current User (claims)

currentUser = context.ServiceProvider.GetRequiredService<ICurrentUser>();
if (currentUser.IsAuthenticated)
{

context.Handled =

context.TenantIdOrName = currentUser.TenantId?.ToString();

HttpContext.User.Identity.Claims
.FirstOrDefault(c => c.Type == “TenantId”)

Presenter Notes
Presentation Notes
When a user logs in, we save his TenantId to the claims.
And when user comes back again, we identify the user from this TenantId that’s retrieved from the claims.

ldentifying the Active Tenant

2. Query String

tenantId = httpContext.Request.Query["tenantId”].ToString();
if (! .IsNullOrWhiteSpace(tenantId))

{

context.Handled = ;
context.TenantIdOrName = tenantld;

https://fabrikam.com?tenantId=3

ldentifying the Active Tenant

3. Route

tenantId = httpContext.GetRouteValue("tenantId”);
if (tenantId !=)

{

context.Handled = ;
context.TenantIdOrName = tenantId.ToString();

https://fabrikam.com/acme/

Presenter Notes
Presentation Notes
Store tenantId as route path

ldentifying the Active Tenant

4. Header

requestHeader = httpContext.Request.Headers[”_tenant™];
if (requestHeader.Any())

{

context.Handled = ;
context.TenantIdOrName = requestHeader.First();

Request Headers (10.759 kE)

__tenant: a%bad0cl-a3b4-3b17-belb-3a0d383d076s

Accept: application/json, text/plain, */*

Presenter Notes
Presentation Notes
We use headers especially for SPA or 3rd party clients like mobile apps.

ldentifying the Active Tenant

5. Cookie

cookieValue = httpContext.Request.Cookies[” tenant™];
|

1="null)

if (cookieValue

{
context.Handled = ;

context.TenantIdOrName = cookieValue;

Request Cookies

- - -

__tenant: a%bad0c0-az3b4-3b17-belb-3a0d333d0762

ADPI0SNaredLookiesL s LTLUSENYVNe WIERFQvYL e db _J4)R1

a N gl | | I. I_.

ldentifying the Active Tenant
6. Domain

host = httpContext.Request.Host.Value;
tenantName = Parse(host, "{@}.fabrikam.com");
|

1= null)

if (tenantName

{

context.Handled = ;

context.TenantIdOrName = tenantName;

Presenter Notes
Presentation Notes
This is good if your customers make e-commerce, online shopping etc.
So far we understand who the tenant is, now let's look at data isolation.

Data Isolation

Data Isolation — Traditional way

EfCoreBookRepository : EfCoreRepository ,IBookRepository

{
CurrentTenant _currentTenant;
List<Book> ()
{
return DbContext.Books.Where(x => x.TenantId == _currentTenant.Id).TolList();
}

You normally do this

® abpio

Data Isolation

| Book : Entity<Guid>, IMultiTenant

Guid? TenantId { ; ;)
Name { 3 3 I

® abpio

Presenter Notes
Presentation Notes
We use IMultiTenant interface to make an entity multi-tenant.
By using interface in this way, we make the TenantId field standard so that we can easily filter
ABP automatically sets the TenantId when you create a new entity.

ABP Framework supports
Shared Database: All tenants are stored in a single database.
Database per Tenant: Every tenant has a separate, dedicated database to store the data related to that tenant.
Hybrid: Some tenants share a single databases while some tenants may have their own databases.

Multi-tenancy works seamlessly in the framework level.
When you implement your entities from this interface, ABP Framework automatically filters entities for the current tenant when you query from database. So, you don't need to manually add TenantId condition while performing queries. So we isolate the tenant data by default.

Data Isolation — EF Core

B Microsoft | Learn Documentation

NET Languages~ Features ~ Workloads ~

Training Certifications Q8&A Code Samples Assessments Shows Events

APls ~ Resources

b
o

Learn / Entity Framework f Entity Framework (

.MET data

~ Entity Framework

Entity Framewaork

* Soft delete: An Entlt Type defines an

Global Query Filters

IsDeleted property.

* Multi-tenancy: An Entity Type defines a
TenantId property.

* Releases and planning (readmap)

» DbContext configuration and initializatio
* Create a model

* Manage database schemas

~ Query data

Overview

OnModelCreating). A query predicate is a boolean expression typically passed to the LINQ where query operator. EF Core
applies such filters automatically to any LING queries involving those Entity Types. EF Core also applies them to Entity

Types, referenced indirectly through use of Include or navigation property. Some common applications of this feature are:

« Soft delete - An Entity Type defines an IsDeleted property.
* Multi-tenancy - An Entity Type defines a TenantId property.

Presenter Notes
Presentation Notes
Allows you to define a filter condition that is automatically applied to all queries for a given entity.
* Softdelete, Multi-Tenancy, Published

These filters are LINQ expressions that applies to Entities OnModelCreating phase.
This feature is generally being used for soft deleting an entity and multi-tenancy.
These features are generic features that should be filtered application-wide.

And ABP uses this system for the EF Core Integration.
So, it is well integrated to EF Core and works as expected even if you directly work with DbContext.

Data Isolation — EF Core Manual Way

ublic class MyDbContext : DbContext

private readonly CurrentTenant currentTenant;
public DbSet<Book> Books { get; set; }

protected override void OnModelCreating(ModelBuilder builder

base.OnModelCreating(builder); HCISQUGI'YFilter()

builder.Entity<Book>(b => for gIObCII filtering
{

b.HasQueryFilter(x => x.TenantId == currentTenant.Id);
})s

Presenter Notes
Presentation Notes
In traditional way, you need to use HasQueryFilter for all your multi-tenant entities in OnModelCreating method of the DbContext.
Let's see how we automate this in the framework.

Data Isolation — EF Core 1-) Find all
entities

public class AbpContext<TDbContext> : DbContext, IAbpEfCoreDbContg

{ Implement

protected virtual void ConfigureGlobalFilters<TEntity>(

ModelBuilder modelBuilder, IMutableEntityType mutableEnti /MU/tiTenant

where TEntity : class

'if (typeof(IMultiTenant).IsAssignableFrom(typeof(TEntity)))
{

Expression<Func<TEntity, bool>>
multiTenantFilter = e => EF.Property<Guid>(e, "TenantId") == CurrentTenantld;

modelBuilder.Entity<TEntity>().HasQueryFilter(multiTenantFilter);

2-) Create LINQ
expression

3-) Add to global filters

Presenter Notes
Presentation Notes
We find all entities that implement an IMultiTenant interface.

To filter the multi-tenant entities by default we are using EF Core Global Query Filters.
These filters are LINQ query expressions that applies to Entities OnModelCreating phase.
This feature is generally being used for soft deleting an entity and multi-tenancy.
These features are generic features that should be filtered application-wide.

And ABP uses this system for the EF Core Integration.
So, it is well integrated to EF Core and works as expected even if you directly work with DbContext.

Data Isolation — EF Core PROS & CONS

Easy to implement
Supports navigation properties as well

Works only with EF Core

Presenter Notes
Presentation Notes
Planning to change your ORM later, doesn’t work for other ORM!

Data Isolation — EF Core PROS & CONS

IgnoreQueryFilters () disables all filters

= dbContext.Blogs

.Include(x => x.Posts)
.IgnoreQueryFilters()
.ToList();

® abpio

Presenter Notes
Presentation Notes
IgnoreQueryFilters doesn’t get a specific filter as a parameter.
You can't just disable multitenancy but leave soft delete active

Data Isolation — EF Core PROS & CONS

Can be defined for the root entity
of the inheritance hierarchy

1ss Animal { Define to
Animal

: Animal {
: Animal {

® abpio

Presenter Notes
Presentation Notes
In this example, Animal is the root entity type
BigAnimal and SmallAnimal inherit from Animal.
You can just define to the Animal class

Data Isolation — EF Core PROS & CONS
Does not support Stored Procedures or T-SQL

= dbContext.Blogs
.FromSql($"EXECUTE dbo.spGetPopularBlogs")

.ToList();

= dbContext.Blogs
. FromSqlRaw("SELECT * FROM Blogs"
.ToList();

Presenter Notes
Presentation Notes
And there’s Row Level Security which covers almost all cases.

But Row Level Security is relatively complex to implement and you need to stick to SQL Server.

EF Core Global filters method is ideal for a pragmatic solution

Data Isolation — EF Core PROS & CONS

LEC R EE g tnatng B Database level solution
Row-Level Security (3 Row Level Security

Applies to: ¥ SQL Server ¥ Azure SQL Database

Rows filtered based on
user roles, attributes

¥ Azure SQL Managed Instance ¥ Azure Synapse

& Restriction logic I1s done
I I in the DB

https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security @ Obp.iO

Presenter Notes
Presentation Notes
And there’s Row Level Security which covers almost all cases.

But Row Level Security is relatively complex to implement and you need to stick to SQL Server.

EF Core Global filters method is ideal for a pragmatic solution

https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security

"Data Isolation — MongoDB

public virtual async Task<FilterDefinition<TEntity>> CreateEntityFilterAsync(TKey id
{

var filters = new List<FilterDefinition<TEntity>>

{ 1-Find all

Builders<TEntity>.Filter.Eq(e => e.Id, id)

}s IMultiTenant

if (typeof(IMultiTenant).IsAssignableFrom(typeof(TEntity)))

{
filters.Add(Builders<TEntity>.Filter.Eq(e => 2—Creqte

((IMultiTenant)e).TenantId, CurrentTenant.Id));

} filter
return Builders<TEntity>.Filter.And(filters); eXp r633|0n

3-Add to our custom global filters @ abpio

Presenter Notes
Presentation Notes
We have MongoDB implementation as well.

ABP abstracts the IMongoDbRepositoryFilterer interface to implement data filtering for the MongoDB Integration, it works only if you use the repositories properly.
Currently, the best way to implement a data filter for the MongoDB integration is to create a derived class of MongoDbRepositoryFilterer and override AddGlobalFilters. Example:

MongoDbRepositoryFilterer is being used for data filtering
The framework automatically adds TenantId filter to all the queries

https://docs.abp.io/en/abp/latest/MongoDB

Set Tenantld for New Entities

Set Tenantld for New Entities

public abstract class Entity : IEntity
{
protected Entity()
{
if (this is not IMultiTenant entity)
{
return;
}

var tenantId = AsynclLocalCurrentTenantAccessor.Instance.Current?.Tenantld;

ObjectHelper.TrySetProperty(entity, x => x.TenantId, () => tenantId);

Set Tenantld by reflection @ bpio

Presenter Notes
Presentation Notes
To avoid mistakes.

We set the TenantId for a new multi-tenant entity in the constructor.
We get the active TenantId from the active tenant’s scope and set it.
This way we are sure that TenantId is always being set

DB Connection String Selection

Connection String Selection — DB

1. The current tenant

Skl dbo.AbpTenantConnectionStrings

=% Columns
= Tenantld (PK, FK, uniqueidentifier, not null)
-~ Name (PK, nvarchar(64), not null)
B Value (nvarchar(1024), not null)

Kevs

2. The current module / microservice
3. The default connection string

Presenter Notes
Presentation Notes
When your application allows customers choose their own database, then you need to save each tenant’s connection string.
The master database connection string is stored in the configuration file: appsettings.json
And if a tenant wants a separate database then we store its connection string in AbpTenantConnectionStrings table with TenantId and Value.

This way we setup a hybrid approach for both shared and dedicated database architecture.

Module connection string:
https://github.com/abpframework/abp/blob/dev/templates/module/aspnet-core/host/MyCompanyName.MyProjectName.HttpApi.Host/appsettings.json#L5

Connectlon String Selection — Code

public class : DefaultConnectionStringResolver
{
public async Task<string> ResolveAsync()
{
var tenant = await FindTenant(_currentTenant.Id);
1f (tenant.ConnectionStrings.Any()) [) .
edicated DB
{ L e - e
var tenantDefaultConnectionString = tenant.ConnectionStrings.First();
} return await base.ResolveAsync(tenantDefaultConnectionString);

return await base.ResolveAsync(Options.ConnectionStrings.Default);

® abpio

Presenter Notes
Presentation Notes
We use a factory service to dynamically set the connection string when the DbContext is being created.
We use DbContextCreationOptions for this approach
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptionsbuilder?view=efcore-7.0

Changing the Active Tenant

Changing the Active Tenant

tring GetTenantStatistics(Guid tenantId)

ing (_currentTenant.Change(tenantId))

Set active tenant

private IDisposable Change(Guid? tenantId, string? name = null)

i
var originalTenant = _currentTenantAccessor.Current;
_currentTenantAccessor.Current = new BasicTenantInfo(tenantId, name);

return new DisposeAction<ValueTuple<ICurrentTenantAccessor, BasicTenantInfo?>>
(static (state) => {
var (currentTenantAccessor, originalTenant) = state;
currentTenantAccessor.Current = originalTenant;

¥, (_currentTenantAccessor, originalTenant)); Revert baCk

Presenter Notes
Presentation Notes
In each HTTP request, you can only query for the active tenant.
But sometimes it may be necessary to change the active tenant.
For example when you have background job that generates reports for each tenant (or in Windows Services)

In this case, we use a disposable method which is being used with “using” keyword.
Here we keep the original tenant in a temporary variable and set the new tenant.
Doing this, we filter all queries by this tenant.
Then we restore the original tenant after using the existing statement.

Setting the Active Tenant in Middleware

: IMiddleware

public async Task InvokeAsync(HttpContex: context, RequestDelegate next)

{

using (currentTenant.Change(currentienant.Id))

{

awailt next{cgntext); var app = context.GetApplicationBuilder();

app.UseRouting();
app.UseAuth ntication();

Set the Cu rrent if (MultiTen<ncyConsts.IsEnabled)

{

tena nt Within the } app.UseMiddleware<MultiTenancyMiddleware>();
middleware

app.UseAuthorization();
app.UseSwagger();

Presenter Notes
Presentation Notes
We created a middleware called MultiTenancyMiddleware.
And we set the current active tenant in this middleware.

Temporarily Disable Multi-Tenancy

® abpio

Disabling Multi-Tenancy Filter (Usage)

IDataFilter filter;
9

(_filter.Disable<IMultiTenant>())

return _bookRepository.GetCount();

Returns book
count without

tenantld filter

Presenter Notes
Presentation Notes
Sometimes, you may need to query on all tenants especially when your tenants share the same database.
Getting report among your tenants.
In this example we get all book count without tenant filter.
After the “Using” code block finishes, TenantId will be restored and multi-tenancy filtering will run again.

Disabling Multi-Tenancy Filter (Implementation)

DataFilter : IDataFilter, ISingletonDependency

ConcurrentDictionary<Type, > filters;
IDisposable Disable<TFilter>() TFilter :

GetFilter<TFilter>().Disable();
return DisposeAction(() => Enable());

IDisposable Enable<TFilter>() TFilter :

GetFilter<TFilter>().Enable();
return DisposeAction(() => Disable());

Presenter Notes
Presentation Notes
We use a singleton class called DataFilter and save all filters in a concurrent dictionary.
To keep the active passive state of a filter.
If you disable multi-tenancy filter then, it’ll be ignored in global filters.
It returns DisposableAction to allow “Using” statement

Database Migration

® abpio

Presenter Notes
Presentation Notes
There are 3 database migration approaches

Database Migration

Approach-1: Make DB migration with a custom tool

Easy to implement. All tenants are in the same version
May get too long time for big number of tenants and data.
All tenants wait for all upgrade progress

Approach-2: Run migration on first DB access

Upgrading is distributed to time. A tenant does not wait for another
First user may wait too much and see timeout exception.

Hard to implement (concurrency problems)!

® abpio

Presenter Notes
Presentation Notes
Approach 2: race condition

Database Migration - Ideal Way

Approach-3: Make two types application servers.

Upgraded tenants use the new application, other tenants use
the old application

Minimum wait time for a tenant

Upgrading can be scheduled for tenants

Run A/B tests and see bugs before anyone else
Requires multiple app servers

Hard to maintain and monitor

Presenter Notes
Presentation Notes
Sometimes you see the old UI of Gmail and your friend sees the new UI.
Why doesn’t Gmail migrates everyone at the same time.
Because it’s time consuming. The migration is spread over time.

So Google separates the Gmail as old and new versions.
A tool updates the applications and databases in the background.
Each tenant is being notified if they are upgraded.

this is the ideal way For big systems !

Do You Need Multi-Tenancy?
® abpio

Do You Really Need Multi-Tenancy?

Multi-tenant development is hard - Reconsider!

1- Can a user be shared among other tenants?

McDonald's - City Center McDonald's - Train Station
Our customer has -

branches in different I
cities, is it multi-tenant? [

Our university has
different faculties; should |
make each faculty a

different tenant?
Paul (Finance) Mila (Marketing)

Presenter Notes
Presentation Notes
1- users can be members of different tenants, then your application is definitely not multi-tenant. Multi-tenancy means a tenant’s data is always isolated, even if it is logically separated. You cannot share a user among your tenants.

You are confusing Grouping with Resource Sharing!

Do You Really Need Multi-Tenancy?

2- Any tenant needs to see the other tenant's data?

Amazon.com Amazon.com

Shop-1 Shop-2 adidas.amazon.com nike.amazon.com

Notebook Adidas Shoes Nike Shoes

NOT MULTI-TENANT MULTI-TENANT

Presenter Notes
Presentation Notes
If your answer is YES, then your application is not multi-tenant.
In multi-tenant apps, the tenant’s data cannot be shared in any circumstances among the other tenants.
When you share “iPhone” with the sellers; you violate the multi-tenant rule.
While your Amazon.com is still SaaS, it shouldn’t be multi-tenant.
their own user, roles, settings. Also these companies will have their own branding like custom login screen, custom logo, different theme layouts, menu items, language options, payment gateways etc…

Do You Really Need Multi-Tenancy?

3- Does your application still work if you physically move
one of the tenants physically?

Amazon.com

. . shared
Shop-1 Shop-2

Presenter Notes
Presentation Notes
This means your tenants are tightly coupled with the application's infrastructure or database,
This requirement prevents you from making it multi-tenant because it breaks the entire system when you take out a tenant.

Do You Really Need Multi-Tenancy?

4- Do your customers need higher security and data protection rules?

SECURITY
PRECAUTIONS

GDPR «» SPPR
REGULATIONS

DATA RETENTION
POLICIES

Presenter Notes
Presentation Notes
Government agencies or banks may require high security, different database storage policies, or even the database to be located in a different geographic location and not accessible from other networks.

Thank you for joining ©

X https://twitter.com/alperebicogl
u

Q https://github.com/ebicoglu
open-source

m https://medium.com/@alperonline web application
framework

J’ Download this presentation: httpS: / /q bp.io

| A

https://github.com/ebicoglu/presentations
‘

https://github.com/ebicoglu/presentations/

	Building Multi-Tenant �ASP.NET Core Applications
	Open-source Framework on
	Open-source Framework on
	What is ABP Framework?
	Agenda
	What is Multi-Tenancy?
	As-a-Service Business Models
	Advantages of Multi-Tenancy
	Challenges of Multi-Tenancy
	Deployment & Database Architectures
	Maintaining Application States
	Identifying the Active Tenant
	Identifying the Active Tenant
	Identifying the Active Tenant
	Identifying the Active Tenant
	Identifying the Active Tenant
	Identifying the Active Tenant
	Identifying the Active Tenant
	Identifying the Active Tenant
	Data Isolation
	Data Isolation — Traditional way
	Data Isolation
	Data Isolation — EF Core
	Data Isolation — EF Core Manual Way
	Data Isolation — EF Core
	Data Isolation — EF Core PROS & CONS
	Data Isolation — EF Core PROS & CONS
	Data Isolation — EF Core PROS & CONS
	Data Isolation — EF Core PROS & CONS
	Data Isolation — EF Core PROS & CONS
	Data Isolation — MongoDB
	Set TenantId for New Entities
	Set TenantId for New Entities
	DB Connection String Selection
	Connection String Selection — DB
	Connection String Selection — Code
	Changing the Active Tenant
	Changing the Active Tenant
	Setting the Active Tenant in Middleware
	Temporarily Disable Multi-Tenancy
	Disabling Multi-Tenancy Filter (Usage)
	Disabling Multi-Tenancy Filter (Implementation)
	Database Migration
	Database Migration
	Database Migration — Ideal Way
	Do You Need Multi-Tenancy?
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Thank you for joining 

