
Our Never-Ending
Journey of GitOps
Transformation with
Flux CD

Kwong Tung Nan

DevOps Engineer, TalkHub

tungnan5636@gmail.com

Or, democratizing infrastructure

CC BY-SA 4.0

About Me
Kwong Tung Nan | 邝东南

DevOps Engineer @ TalkHub

• Graduated Year 2022 @ Universiti Teknikal Malaysia Melaka (UTeM)

BaCompSc. in Artificial Intelligence

• Frequent FOSS Contributor

• Mainly develops in Django & Angular

• Codes the Malaysia Land Public Transport Fans (MLPTF) community

site @ community.mlptf.org.my

https://github.com/kwongtn

https://github.com/kwongtn

Disclaimer

• I do not represent / work at Weaveworks / ControlPlane, nor am a Flux maintainer. I

contributed a few lines of docs, but that’s all

• All views represented here are of mine and don’t represent any other entities.

• I’m still a novice, stuff presented are accurate to the best of my knowledge. If there are any

discrepancies, I stand corrected

3

Kubernetes in a Nutshell

The typical way of thinking things

1. I don’t care where the storage is, as long as I have 20GB.

2. I don’t care how you schedule, as long as I have a pod that has X CPU, Y memory.

3. I don’t care which traffic goes where, as long as 10% goes to the new version.

“I don’t care, as long as”

The traditional way of doing things

1. Create a yaml file, lint it (do you?)

2. Run kubectl apply

3. Pray

4. Probably chuck the yaml file somewhere, hopefully in version

control

“kubectl --apply-and-forget”

As time passes, changes pile up

• You start to ask yourself (and teammates around)

• “Did I apply this configuration?”

• “Where did I apply it? When?”

• “Isn’t this deleted already?”

• “Does this change reflect the cluster state?”

• Or spend time `kubectl get` the cluster to validate

problems above

7

The Problem

• We are putting too much trust on people

• We say: “You should commit in source control

after you do the change”, but

• “Haiya I’ll commit the change later, lemme fix

prod first”, then later

• “Eh I did X, Y and Z…..

8

Right?”

Best practice
Me trying to fix prod

first

A DevOps Engineer…

• Maintains infrastructure

• Be first line of defense when shit hits the fan

• Most importantly, edit yaml files

• Hence it is very important that our files & cluster is what we say

it is

9

Meet Weaveworks

• Year 2015, Weaveworks launched Weave Cloud to help manage Kubernetes clusters.

• Year 2016, they destroyed their entire production cluster, but managed to restore it in 40 minutes, due

to good practices.

• Year 2017, the GitOps term was coined.

10

GitOps Core Principles

1. Declarative

The entire system has to be described declaratively.

2. Versioned and immutable

The canonical desired system state is versioned in Git.

3. Pulled automatically

Approved changes are automatically applied to the system.

4. Continuously reconciled

Software agents to ensure correctness and alert on divergence.

11

Meet FluxCD

• Flux is a set of continuous and progressive delivery solutions for

Kubernetes that are open and extensible.

• Runs using the GitOps Toolkit (gotk)

• A pull-based pipeline

• It is a CNCF Graduated project.

• Released by Weaveworks in 2019, now managed by ControlPlane

• Now on v2

12

Push vs Pull Pipelines

• Push-based pipelines potentially expose

credentials outside of cluster.

• Hence it is a commonly-known attack

vector for production.

• Pull-based pipelines on the other hand

works within the trust-domain of the

cluster.

13

A typical push-based pipeline

A typical pull-based pipeline

The Weave GitOps Pull Pipeline

• The Deployment Automator watches the image registry for changes.

• The Deployment Synchronizer watches the cluster to maintain its state.

14

The GitOps Toolkit (gotk)
• Source Controller

Provide a common interface for artifacts acquisition.

• Kustomize Controller

A specialized operator for running continuous delivery pipelines for

infrastructure and workloads defined with Kubernetes manifests and

assembled with Kustomize.

• Helm Controller

Allows declaratively managing Helm chart releases with Kubernetes

manifests.

• Notification Controller

An operator specialized in handling inbound and outbound events.

• Image Automation Controller

To update a Git repository when new container images are available.

15

How a commit cycle works

We assume that the cluster has been

bootstrapped with flux.

• Take note that git is always the source of

truth.

• A similar procedure also will be done on

reconciliation.

16

Extras – Image Update Automation

• FluxCD automatically creates a branch with latest

detected changes, ready for you to accept &

incorporate into your cluster.

17

In our Prod…

Our Scenario

• Our product, is a CRM that serves customers mainly in SEA.

• For usual deployments, a SemaphoreCI pipeline is invoked & helm charts are applied.

• Most utility applications (redis, elasticsearch etc.) are already deployed using helm charts.

• We have 3 k8s clusters, production, staging &

monitoring.

• A near 24/7 availability is required.

19

How did we migrate?

1. Add a new cluster, “test”. Everything is tested there first.

2. Then in staging, the Flux Controller & GitOps Toolkit were installed.

3. The SealedSecrets controller was added first, so we can start committing secrets into the GitOps

repository.

4. Anything already managed by Helm were taken over by FluxCD.

5. Declarations were also added according to namespaces. Worth noting that flux ignores resources that

are not declared / labeled.

20

Metrics?

• Since the introduction of GitOps, cluster recovery reduced from 3 days to 40 minutes, and

• We can be pretty sure the cluster is at the state we want it to be.

>100x speed improvements on
cluster recovery

More Metrics?

From 2-3 changes in a month, to 3-5 changes in a week

• Changes can now be queued and iteratively applied. We do not need to wait forever for maintenance

window to do changes.

• We can now “democratize” cluster management by involving juniors without being scared that our

cluster will randomly explode (or make untraceable changes).

>5x infra innovation

Dev…Oops!

How I brought down production, twice.

And lessons learnt.

Lesson #1: Always lock versions for prod

• During migration, configuration was copied directly

from staging to prod. We missed the version line

• Later, when updates to the helm charts are done and

merged (for testing), prod automatically updated

itself too

• Outage lasted for about 15 minutes. Boss was

definitely NOT happy

24

Lesson #2: Use Ctrl + F extensively

• Humans make errors.

• I accidentally modified prod image targets instead of

staging.

• Luckily with GitOps, we just roll back the commit. But

routing changes were already partially done.

• This outage lasted about 5 minutes.

• Senior was extremely NOT happy

25

More Lessons Learnt

• We should have started way, way earlier – the earlier you incorporate GitOps, the better.

• When convincing your boss, try getting into the “So What” conclusion as soon as possible, to let them

have a higher-level overview.

• Dig into existing config as much as possible to reduce discrepancies between declared & actual. (E.g.

Secret targets like envFrom, or manually passed ones)

• Don’t worry if it takes 20 deployment cycles to fully roll it out – be right on the first try.

• Install a GUI dashboard / tool right from the start to help sort out deployment errors during migration.

26

Also, things to consider

Things to Consider

• Weaveworks went out of funds late 2023 and shut down subsequently.

28

Things to Consider

• However, ControlPlane took over the project (employing Flux maintainers in the process)

to continue its development.

• Currently flux is growing at a higher velocity than before!

29

Why FluxCD and not XYZ (Argo)?

• We are using flagger from the start already. Hence I figured

that since both are from FluxCD project they should work well

together.

• FluxCD is wayy more barebones than ArgoCD,

simpler = better (?)

• Hence, easier dev onboarding from the yaml side.

30

In a nutshell, why GitOps?

1. Increased Productivity, Auditability, Reliability

2. Enhanced Developer Experience / Democratization of

development

3. Stronger security guardrails

4. Faster development, better ops

5. Easier Compliance & Auditing

31

Thank you
Connect with me!

https://github.com/kwongtn

https://www.linkedin.com/in/kwongtn/

https://github.com/kwongtn
https://www.linkedin.com/in/kwongtn/

	Our Never-Ending Journey of GitOps Transformation with Flux CD
	Slide Number 2
	Disclaimer
	Kubernetes in a Nutshell
	The typical way of thinking things
	The traditional way of doing things
	As time passes, changes pile up
	The Problem
	A DevOps Engineer…
	Meet Weaveworks
	GitOps Core Principles
	Meet FluxCD
	Push vs Pull Pipelines
	The Weave GitOps Pull Pipeline
	The GitOps Toolkit (gotk)
	How a commit cycle works
	Extras – Image Update Automation
	In our Prod…
	Our Scenario
	How did we migrate?
	Metrics?
	More Metrics?
	Dev…Oops!
	Lesson #1: Always lock versions for prod
	Lesson #2: Use Ctrl + F extensively
	More Lessons Learnt
	Also, things to consider
	Things to Consider
	Things to Consider
	Why FluxCD and not XYZ (Argo)?
	In a nutshell, why GitOps?
	Thank you

