
Architecting a large 
social network without 

breaking the bank
Oren Eini

oren@ravendb.net



Parler social network

• January 8
• Google remove from play store

• Apple removed from app store

• January 9
• AWS told Parler to take themselves off in 24 hours

• This talk isn’t about Parler
• It is about the technical details

https://twitter.com/th3j35t3r/status/1350612426115452935/photo/1

https://twitter.com/th3j35t3r/status/1350612426115452935/photo/1


Parler “secret” sauce

Purpose? Specs How many? Total

Scylla (Cassandra clone) 64 cores & 512 GB
14 TB NVMe

40 nodes 2,560 cores
20 TB RAM
560 TB NVMe disks

PostgreSQL 96 cores
768 GB RAM
4 TB NVMe

100 9,600 cores
75 TB RAM
400 TB NVMe disks

Application servers 16 cores
64 GB

400 6,400 cores
25 TB RAM

To buy? 6 million USD
At AWS? 300K + / month



Break down the numbers

• AWS @ 300,000 a month

• ~13 million users by Jan 2021

• Per user cost 2.3¢ a month

• Make sense?

• If you are a VC, maybe?

• For a tech guy? 

You are kidding, 
right?!



Can we do better? I certainly hope so!

• Twitter has ~340 million users

• 42% of users are active

• 10% of users generate 80% of 
content

• ~10K tweets / sec

• Max tweets / sec: 143,199 @ 
2013

• 0.06% of accounts have > 20K 
followers

• 2.12% has > 1K followers

• Common user: 2 tweets a month



Goal in numbers: 50M users, 50% 
engagement
• 50,000,000 users

• 25,000,000 post each month

• 50% passive daily users (readers, 
not posters)

• 80% users under 5 posts a
month

• 20% < 300 posts a month

• 1% daily active (max 500 posts / 
day)

• 50K users @ 150 posts / day = 
225 M posts per month

• 5M users @ 300 post / month = 
1.5 B posts per month

• 20M users @ 5 / month = 100 M 
posts per month

• Total: 1.745 billion posts / 
month



What is the load?

• Total: 1.745 billion posts / 
month

• 2,400,000 posts / hour

• 670 posts / second

• Not consistent load

• Superbowl 2016:
• Total 17 Million tweets

• 152,000 tweets / minute at max

• Highly variable on events
• Low hundreds to tens of

thousands can happen in an 
instant.



Out of scope: Anything but text

• Ignoring images & videos

• Re-encoding videos

• Stripping EXIF metadata

• Sending large files to our users

• That is the CDN’s issue, nothing particularly interesting here
• Still important, but mostly a solved problem



Service level agreement: Capacity

• 5,000 posts / second
• 18 millions / hour

• 432 millions / day

• P99.99 at < 200 milliseconds



We need to design, upfront

• Twitter: It’s all a tweet
• @mentions

• Retweets

• Just properties / metadata

• Facebook: Posts & Replies

• Homogenous is easier, let’s go 
with that

• Favor reads over writes

• Read performance paramount
• 100 ms has impact

• Favor user experience over 
guarantees
• Also known as: cheating



Infrastructure components

• Core for everything

• Selected for:
• Ease of scale

• Ease of distribution

• Accepted limitation inherent to 
using them

• If it’s hard, let’s not do that

• Content Delivery Network

• S3 Compatible Object Store

• Distributed Key/Value store

• Distributed Queue



Adding a new post

• POST /posts/new {… }
• If offline, add to local queue?

• Add to queue

• Return to client

• User see the post immediately posted
• Client side behavior

Why?



Core concept: Don’t commit to doing hard 
things
• Adding to a queue is simple

• Trivial to scale accepting to queue

• Gives us time to process

• Flatten out spikes in traffic

• Key observation: What is the SLA for other users to see my posts?

• The user who posted already see it “live”. 



Design decisions to make our life easier

• All data is Post (json structure)

• Post has Id, only fetched by id
• Meaning we have a simple scheme

• Easy to scale, duplicate, share

• Posts are immutable
• No edits

• Can delete, however
• “soft” delete, mind

• Much simpler data model to 
scale

• Can replicate data seamlessly 
(not need to figure conflicts)
• Delete always win

• Key/Value is simple to shard / 
scale / replicate

• Cheap to operate



Identifier generation: How twitter does it?

• 63 bits number (signed long): Snowflake

• Generates mostly sequential ids

• Important for many optimizations

• Can be generated independently on multiple machines

• Explicitly: Ids aren’t secret
• You can guess them…

Seq Machine Id Timestamp

12 bits 10 bits 41 bits 

To generate multiple ids per millisecond Max 1,024 machines Milliseconds from epoch

https://twitter.com/quinetweet/status/1309951041321013248

https://twitter.com/quinetweet/status/1309951041321013248


Identifier generation: Thoughts…

• Predictable id can be problematic:
• Scanning attacks

• Parler grab – 70 TB(!) of data
• Distributed effort by activists

• https://github.com/ArchiveTeam/parler-grab

• Even public posts are sensitive in bulk

• Requires complex setup:
• Authentication

• Rate limiting

• Can we avoid this?

https://github.com/ArchiveTeam/parler-grab


What do we need from identifier?

• Unique

• Nice to have:
• Sorted
• Don’t actually have to require it, though

• Unique ids:
• Machine readable
• Use Base58 ids: 4rzDn3T7Z2FLXqYxDTg5qqsbx57DRdkTvQTBcibc4da5
• 16 bytes, lots of space to play with

• Guessing a single item, probably fine

• Note, public post is in the identifier directly

24 bits 20 bits 20 bits 64 bits

Time in minutes 
(cycle @ 31 years)

Machine id
(Enough for 1M)

Flags
Public post, others

Crypto random



Permissions at the architecture level

• Can assume most posts are public

• As a flag in the id, can natively skip permissions checks most cases

• If private, then we need to check if user can read post
• Important optimization for vast majority of posts

• All popular posts are public, by definition
• Simply the process significantly

• At the architecture level, making permissions explicit



Reading posts

• GET /read?
post=4rzDn3T7Z2FLXqYxDTg5qqsbx57DRdkTvQTBcibc4da5&
post=7YWFiYdz8xcHE6jhQqQrUceyvLSkcDqpMq74i48kjxCV
• Batch oriented

• Limit number of items in one shot

• Media – directly via CDN, not through our API

• Posts are in Key/Value store – always queried by id
• Super cheap to manage / scale



Data distribution & immutability

• Posts never change
• But may be deleted (One way)

• Easy to propagate changes

Most posts 
are local



Handling deletes

• Synchronizing state across distributed regions?
• Complex

• Delete on owner datacenter

• Send delete command to all regions

• Assume that deletes are rare



What about the timeline?

• A single post, easy

• What about timeline view?

• The timeline abstraction & the 
last read location
• Similar to Kafka’s logs

• The public timeline
• All activities of a user

• The private timeline
• All the activities of the users

followed by the user

Last read…



Handling a new post

The user’s posts

Global timeline (all public posts)

Timeline for replies

Publish to followers



timelines.put(timeline_id, name, post_id)

• Append only structure

• Going to have a lot of those

• Core abstraction

• Once reach certain size (~500 
posts), create a section



How that works?

• ~500 post ids @ 20 bytes each

• With compression, assume ~8KB

• Immutable

• Last value points to previous 
section

• Unique section ids

• Once we have a section, throw 
on CDN
• Basically, download a file☺

• GET /timeline?id=john_doe@public

• Read the timeline 

• Get recent ids: GET /read?post=…

• Get sections, parse and then load 
again



Implementing hashtags

• That is just another time line



What about the whales?

• Justin Bieber

• Katy Perry

• Rihanna

• Cristiano Ronaldo

• Taylor Swift

@ 100 million followers



Whale has more than 500 followers

• ~4% of overall users.

• Avoid publishing to many timelines

• Instead, go the other way (good cache target)



Overall architecture: New post

Send to server…

Put to queue
Accepted

Process



Overall architecture: Posting

• Post to data center’s Key/Value store

• Publish to timelines

• When timeline buffer is full, publish new
segment



Where is the behavior?

• Select the right timelines to post to

• Can do that after the fact

• Got time to manage this



Architecture: Simple tools, client side work

• Components:
• CDN for media / sections

• Key/Value

• Queue

• Workers

• Require a lot from the client
• We aren’t paying for that



Client side speed

• Client does a lot of work
• Fetch timelines

• Fetch posts

• Additional responsibilities
• Deduplicate posts

• Ignore missing posts

• Work in batches, UX is meant to allow high 
perceived speed



What about other things?

• Monetization – go ask a business major, this is a tech talk

• Tracking – throw into a queue, process in the back end

• Statistics – number of likes, views, etc
• Dedicated solution (Algorithm: PN Counters)



Key concept: What do we need?

• Critical: What limits can we accept that make our life easier?

• Then set out to design a system just for that purpose.

• At scale, don’t have agility, cost too much.



Questions?


