
Jack Vanlightly @vanlightlyJack Vanlightly @vanlightly

Distributed Systems Showdown

TLA+ vs Real Code

… and why we model

Jack Vanlightly @vanlightly

Jack Vanlightly

Principal Software Engineer

www.jack-vanlightly.com
@vanlightly

http://www.jack-vanlightly.com

Jack Vanlightly @vanlightly

What we’ll cover…

● Why do modelling at all?
● Quick look at TLA+
● Quick look at Maelstrom/Jepsen
● Case study to compare them

○ Modelling a distributed log storage system

Jack Vanlightly @vanlightly

Why do modelling and verification anyway?

Jack Vanlightly @vanlightly

It starts with a

design doc

MotivationBackgroundContext

Components
Interactions

Diagrams

Jack Vanlightly @vanlightly

Why do modelling at all?
multiple man-years

Jack Vanlightly @vanlightly

It starts with a

design doc

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

Why do modelling at all?
multiple man-years

Jack Vanlightly @vanlightly

What properties should our models have?

Small
Malleable

“Easy” to
internalize

Free of
extraneous

clutter

Reduced to core
behaviour

Verifiable “Living” doc?

Jack Vanlightly @vanlightly

Modelling and Verification with Two Different Tools

TLA+
Maelstrom
Jepsen

Jack Vanlightly @vanlightly

A Quick Look at TLA+

Jack Vanlightly @vanlightly

TLA+ Specifications

Jack Vanlightly @vanlightly

TLA+ Arbitrary Levels of Abstraction

Jack Vanlightly @vanlightly

TLA+ Algorithmic Thinking

● Describe what not how
○ Free from low-level programming considerations
○ Imagine when drawing a design on a whiteboard having to describe

threading models, error handling, network buffers, memory
management…

Jack Vanlightly @vanlightly

TLA+ States and Actions

● State: A snapshot in (virtual) time of the variables
● Action: Takes us from one state to another (state transition)

counter1 = 0
counter2 = 0

counter1 = 0
counter2 = 1

Current state Next state

Action

Step

Jack Vanlightly @vanlightly

State transitions and behaviours in TLA+

Jack Vanlightly @vanlightly

Invariants (something bad that must not happen)

Invariants map to states.

Jack Vanlightly @vanlightly

Liveness (something good that should eventually happen)

Liveness maps to behaviours.

Counters can now decrement as well Liveness property: Eventually both counters reach 2

Something we want

Jack Vanlightly @vanlightly

Summary TLA+

Arbitrary
Levels of

Abstraction

Algorithmic
Thinking

Global view of
state

Multiple
verification

options

Easier to
reason about

Free of
programming

considerations

Model checking
(TLC, Apalache)

Proofs
(TLAPS)

Model
anything

Jack Vanlightly @vanlightly

A Quick Look at Jepsen
And Maelstrom

https://jepsen.io
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/maelstrom

https://jepsen.io
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/maelstrom

Jack Vanlightly @vanlightly

Jepsen Tests

● Test distributed data systems,
checking against specific
transaction isolation and
consistency levels

https://jepsen.io/consistency

Jack Vanlightly @vanlightly

Jepsen Tests

Jack Vanlightly @vanlightly

Jepsen Tests
Checker: Linearizable KV

Op Reg Val Result
Write 1 1 OK
Read 1 1
Write 1 3 OK
CAS 1 2, 3 Fail (correct)
CAS 1 3, 4 OK
Read 1 3 (wrong)

Not a linearizable history

Jack Vanlightly @vanlightly

Maelstrom

Your code (Python,
Ruby, Java, C++,
Rust, Go etc)

Binary run as a
sub-process per
desired node.

Network in/out
is stdin/stdout

Maelstrom forwards
messages between
nodes.

Maelstrom perturbs
the system (nemesis)

Jack Vanlightly @vanlightly

Maelstrom Workloads and Services

● Workloads:
○ G-counter (eventually consistent counter)
○ G-set (grow-only set)
○ Lin-kv (linearizable kv store)
○ Pn-counter (eventually consistent counter)
○ Txn-list-append (transactional)

● Services:
○ Lin-kv (linearizable KV store)
○ Seq-kv (sequentially consistent KV store)
○ Lww-kv (Last-write-wins KV store)
○ Lin-tso (linearizable timestamp oracle)

Jack Vanlightly @vanlightly

Maelstrom Results

● Pass/Fail
● Log of message passing
● Visualization of message

passing
● Maelstrom logs
● Node logs
● Statistics

https://github.com/jepsen-io/maelstrom/blob/main/doc/05-datomic/02-shared-state.md

Jack Vanlightly @vanlightly

Maelstrom Demos

● Ruby, Python, Clojure
● Systems:

○ Raft
○ Datomic
○ CRDTs

● Languages:
○ Raft, Python: 1 file, 593 lines
○ Raft, Ruby: 1 file, 683 lines
○ Datomic list append, Ruby: 1 file, 610 lines

Jack Vanlightly @vanlightly

Summary Maelstrom/Jepsen

Network
stdin/stdout

Json messages.

Verification via
input vs output

Workloads
and checkers

Oriented towards
distributed data

systems

Runs your
code (any
language)

Verification via
simulation with
perturbations

Jack Vanlightly @vanlightlyJack Vanlightly @vanlightly

A First Take

Jack Vanlightly @vanlightly

TLA+ Maelstrom

Arbitrary
Levels of

Abstraction

Invariants based
on input vs

output

Multiple
specifications at
different levels

Abstraction boundary
must offer verifiable

input vs output

Black-box
(checking)

Invariants based
on internal and
distributed state

State is a
bunch of
variables

(global state)

Jack Vanlightly @vanlightly

TLA+ Maelstrom

Causality
(No magic
allowed!)

Things can
just happen

No wall clock
time

Truly
distributed

Runs in the
really real-world

(time exists!)

Can abstract
complex parts
of the system

More things
must be
modelled

Jack Vanlightly @vanlightly

TLA+ Maelstrom

Algorithmic
thinking Programming!

Threading &
concurrency Error handling

Memory
model

Jack Vanlightly @vanlightly

TLA+ Maelstrom

Bad histories

Bad internal
states

Valid histories

Should lead to

Sometimes
lead to

Invariants based
on internal and
distributed state

State is a
bunch of
variables

Jack Vanlightly @vanlightly

State enumeration vs simulation

● Categorize actions into:
○ Control plane (leader elections etc)
○ Data plane (steady state of replication)

● TLC explores state space, every possible sequence of actions explored
(within constraints of state space size)

● Maelstrom uses simulation and perturbations

Jack Vanlightly @vanlightly

State enumeration vs simulation
Distribution of actions is not equal

Perturbations

Maelstrom
● Simulation
● Things happen for a reason
● Slow to explore all possible

control-plane sequences

TLA+ with TLC
● State space explored
● Things can happen at any

time
● One sequence equal to any

other

Control
plane

Data
plane

Jack Vanlightly @vanlightly

My Experiment

The Distributed
Log Storage System

(aka)

Jack Vanlightly @vanlightly

Abstractions

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

Segment Chaining Invariants

Segment with data
outside of segment chain

More than one open
segment in the chain

Temporal ordering

Jack Vanlightly @vanlightly

Segment Invariants

Metadata and bookies
cannot diverge
(segment truncation)

Jack Vanlightly @vanlightly

A First Look at
the Two Models

Jack Vanlightly @vanlightly

TLA+... A Tale of Two Specs
Things I didn’t model:

● Discovery
● Leader election algorithm
● Failure detection
● Reads

Things I did model:
● Leader changes
● Message passing

○ Non-deterministic
ordering

○ Message loss

922 lines

352 lines

Jack Vanlightly @vanlightly

TLA+ Segment Chaining

Jack Vanlightly @vanlightly

TLA+ Segment Lifecycle

Jack Vanlightly @vanlightly

TLA+ Segment Lifecycle - State Space

Model params
Rep factor 3
4 nodes
1 entry

Hardware
12 workers
64 GB RAM
124 GB Storage

Performance
250000 states/s
67M states
14M unique states
4 ½ hour running

Jack Vanlightly @vanlightly

Maelstrom - A Linearizable KV Store

KV:
1 -> 6
2 -> 0
3 -> 2

Cursor: 4

KV:
1 -> 4
2 -> 0
3 -> 2

Committed: 7
Applied: 6

{W:1,6} {R:1}{W:2,0} {W:3,2} {R:2} {CAS1:4} {W:1,8} {R:3}

LeaderFollower

0 1 2 3 4 5 6 7

Maelstrom
clients

Jack Vanlightly @vanlightly

Maelstrom - One Model to Rule Them All!
Things I didn’t model:

● …?

Things I did model:
● Metadata store (not distributed)

○ Session management
○ Discovery
○ Leader election
○ Failure detection

● Bookie nodes
○ Store and retrieve what they are told
○ Fencing

● KV Store node
○ KV store
○ Log reader/writer (segment chaining)
○ Ledger handle (segment lifecycle)
○ Projects log into linearizable KV store

■ Replicates reads & writes

Jack Vanlightly @vanlightly

Maelstrom - One Model to Rule Them All!
How big?

● ~6000 lines of Java
● 52 files
● Utility code = 779 lines

○ Futures
○ Logging
○ Delays
○ Etc

● Nodes
○ Shared: 491 lines

■ send, receive, shared data model, proxying
○ Session management: 183 lines
○ Bookie node: 482 lines
○ Metadata store node: 482 lines
○ KV Store Node: 717

■ BK client (segment lifecycle):1543 lines
■ Log reader/writer: (segment chaining): 1148 lines
■ KV store: 445

○ Timeouts
○ Field names
○ Return codes

Jack Vanlightly @vanlightly

Maelstrom - Single-Threaded Event Loop

Handle
incoming
message

stdin

Resume
delayed

task
Handle

message
timeout

New session/
keep alive

Bookie:
Expire long poll reads

Metadata store:
Expire session

KV store:
Check Leadership
Start Writer
CloseLastLogSegment
Start Catch Up Reader
Catch Up Reads
Replicate
ApplyOp
AppendNoOp
StartReader
Reads

stdin

Jack Vanlightly @vanlightly

KV Store Node

Bookie Node

Metadata Store Node

Jack Vanlightly @vanlightly

Jack Vanlightly @vanlightly

No Blocking Code

Jack Vanlightly @vanlightly

Local Invariants - Looking inside the box again

Local invariants -> Crash the node

Cursor ahead of Last
Entry

KV Store

Op Ids are ordered
and contiguous

No uncommitted
entries below

committed index

Metadata Store

Cannot have more
than one open

segment

Bookies

?

Jack Vanlightly @vanlightly

My experiences, mine!

● Maelstrom
○ Spent more time than I’d like on getting all the asynchronous code to

work correctly:
■ Each node single-threaded to avoid complexity of multi-threading within a single

node
■ Uses an event loop to trigger actions, respond to replies, timeout requests, implement

non-blocking delays
■ Chaining non-blocking calls
■ Handling, propagating errors correctly
■ Building in timeouts, delays into the event loop

Jack Vanlightly @vanlightly

Choice of Language

Java, C++ Ruby, Python

Elegant,
Good for modelling

Statically typed, fast,
good for distributed data
system

Jack Vanlightly @vanlightly

Model Checking
Wins and Fails

Jack Vanlightly @vanlightly

TLA+ Finds Real Protocol Defect! Model Checking Win
TLC Model Checker

Jack Vanlightly @vanlightly

TLA+ Real-life Defect - Model Checking Win
28 CPU threads, 100GB RAM, NVMe SSD

Rep factor 3, 3 Bookies, 1 entry

Jack Vanlightly @vanlightly

TLA+ Model Checking Win

Error trace makes it clear:

● What invariant got

violated

● The specific sequence

of state steps that leads

to the violation with the

states involved

Jack Vanlightly @vanlightly

Maelstrom - Checking Win

I made mistake after mistake after
mistake during the implementation…

Maelstrom usually found them in
under 5 minutes, sometimes an
hour.

Mistake
!

Mistake!
Mistake!

Mistake!

Mistake
!
Mistake!

Showed lower level mistakes that the
higher level TLA+ specification could
not flag.

Great insight into the kinds of
mistakes that could get implemented
in the real implementation.

Jack Vanlightly @vanlightly

Maelstrom - Checking Fail? Or Jack Fail...

Couldn’t start checking until whole system modelled.

A long time passed until I could start getting confidence
via the checking (then huge volume of mistakes to fix).

Could have started with a non distributed KV Store, then slowly
add components as I went, checking along the way.

Jack Vanlightly @vanlightly

Maelstrom - Checking Fail

Ran it for 10 days… did not find this
defect.

Hard-coded losing a key message on
EVERY SINGLE leader failover... nope.

Hard-coded dropping session keep-alives
after 3 seconds in order to trigger leader
failover every 3 seconds … nope.

Hard-coded 100 ms delay between
message sends to each bookie to increase
probability of overlap… Yes! After only 1
hour! (local invariant not jepsen)

Re-enabled local invariants, removed
hard-coded delay and used Maelstrom
random network latency of 10 ms…
… ran for 5 days and finally yes.

Turned off local invariant checking to see
if Jepsen would detect it… Yes! After 5
days.

Jack Vanlightly @vanlightly

From model to implementation

Clarity
Simplicity

Features
Performance
Observability

Security
Operations
Integrations

Language Clients

Jack Vanlightly @vanlightly

You’ve already taken the first steps when using
Maelstrom
● Shows you what you need to log

○ Good logging is a necessity not an afterthought!

● The power of the network shim
○ Not sure I’d give up the convenience of Maelstrom, even with my implementation.

● The model likely has shown you insights into real mistakes that could be
made in the implementation.

● But …
○ Simplicity vs performance - can you reuse the model code at all?
○ Does the model and implementation even have the same language?

Jack Vanlightly @vanlightly

Final Thoughts

Jack Vanlightly @vanlightly

TLA+ Maelstrom

Like sketching
Free flowing

One file,
can keep it in

my head

The Good Parts

It’s just coding
in my chosen

language!

Easy to
inspect the

network

Simple to run
(no servers,
no k8s etc)

Model checker
found defects

fast

Checking found
most defects within

5 minutes to an
hour

Error traces
relatively easy

to parse

Jack Vanlightly @vanlightly

Success!
Or is it?

Battling the
state space

Can be larger,
more complex

Less free
flowing

Hard to keep
in my head

Analysis is
time

consuming!

Boilerplate!

TLA+ Maelstrom

The Challenges

New to TLA+?
Expect a steep
learning curve

Custom
workloads

require Clojure
(learning curve)

Jack Vanlightly @vanlightly

TLA+ Maelstrom

TLA+ is abstract, and
that is its strength

Maelstrom is truly
distributed in true time

Blurs the line
of model and

prototype

Possibly useful beyond
model/prototype stage

Focus on what
not how Free of clutter

Insights directly
related to coding

the solution

Design doc -> TLA+ -> Maelstrom prototype -> Impl

Hopefully makes
you do better

logging

Use them for their strengths

Jack Vanlightly @vanlightly

Modelling is not
a Silver Bullet!

Jack Vanlightly @vanlightly

Thanks!

Art Director and Illustrator: My son!

https://jepsen.io
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/maelstrom
Check out the Maelstrom demos!

BookKeeper TLA+ Specifications
https://github.com/Vanlightly/bookkeeper-tlaplus

My Distributed Log Maelstrom Model
https://github.com/Vanlightly/maelstrom-playground

Attend the TLA+
workshop!!!

https://jepsen.io
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/maelstrom
https://github.com/Vanlightly/bookkeeper-tlaplus
https://github.com/Vanlightly/maelstrom-playground

