
Click to edit Master title style

1

Building a .NET Cross
Platform Profiler
(in an hour)
P a v e l Yo s i f o v i c h

@ z o d i a c o n

Click to edit Master title style

2

About Me

• Developer, Trainer, Author and Speaker

• Book author
• “Windows Kernel Programming” (2019)
• “Windows Internals 7th edition, Part 1” (co-author, 2017)
• “Windows 10 System Programming” (WIP)

• Pluralsight author

• Author of several open-source tools
(http://github.com/zodiacon)

• Blogs: http://blogs.microsoft.co.il/pavely,
http://scorpiosoftware.net

2

http://github.com/zodiacon
http://blogs.microsoft.co.il/pavely
http://scorpiosoftware.net/

Click to edit Master title style

3

Agenda

3

• Overview

• Profiler Architecture

• Loading a Profiler

• Implementing a Profiler

• Summary

Click to edit Master title style

4

Overview

4

• The .NET CLR supports loading an instrumentation
profiler

• COM class implemented in C++ and hosted in a DLL

• Windows only

• The .NET Core CoreCLR supports the same model
• With the same interfaces

• Windows / Linux / MacOS

• We’ll built a simple, yet functional, profiler

Click to edit Master title style

5

OS (Windows / Linux / MacOS)

Profiler Basics

5

.NET Core (Profiled) Process

.NET Core Profiler DLL Log

IPC

Event Aggregator / Logger / UI

CoreCLR

Click to edit Master title style

6

Loading a Profiler

6

CLR

Load DLL pointed to by

CORECLR_PROFILER_PATH_64

Environment Variable

Call DllGetClassObject with CLSID

from CORECLR_PROFILER

Environment Variable

Call IClassFactory::CreateInstance

Call ICorProfilerCallback::Initialize

Profiler is ready

Click to edit Master title style

7

The Profiler and COM

7

• A profiler is not loaded by calling CoCreateInstance

• Requires a threading model to be set

• COM is a Windows technology

• For non-Windows platforms, Microsoft created the

Platform Adaptation Layer (PAL)

• Insulates the profiler developer from platform differences

as far as COM and CLR are concerned

• The PAL is currently bundled with the CoreCLR

source code itself

Click to edit Master title style

8

Project Structure and Build

8

• Using CMake

• CoreCLR uses CMake as its build system

• VS support for CMake is not good enough (IMHO)

• Using MSBuild

• Shared items project holds majority of code

• Specific projects for Windows and Linux

• Compiler for Linux

• Use Clang (not gcc)

• Supports some Microsoft extensions

Click to edit Master title style

9

Testing

9

• Set up environment variables

• Launch application

• Linux testing options (assuming developing on

Windows)

• Deploy and run on a Linux VM

• Use the Windows Subsystem for Linux (WSL)

• Requires windows 10 version 1607 and later

Click to edit Master title style

10

Environment Variables

10

• CORECLR_ENABLE_PROFILING=1

• CORECLR_PROFILER={ProfilerGuid}

• CORECLR_PROFILER_PATH_64={64bitProfilerPath}

• CORECLR_PROFILER_PATH_32={32bitProfilerPath}

Click to edit Master title style

1111

Code!

Click to edit Master title style

12

Summary

12

• .NET Core is cross-platform

• So is a .NET Core profiler

• Use of PAL and standard C++ can help cope with

platform differences

• Profiling is just one part of the job

• The other is actually making good use of the gathered data

Click to edit Master title style

13

Resources

13

• CLR Profiler samples on Github

• David Broman’s CLR Profiling Blog

• Old CLR Profiler on Github

https://github.com/microsoft/clr-samples/tree/master/ProfilingAPI
https://blogs.msdn.microsoft.com/davbr/
https://github.com/MicrosoftArchive/clrprofiler

Click to edit Master title style

14

Q&A

Thank You!

