C++ Experiments:
Cpp2 vs Carbon

Alexander
Enaldiev

Kaspersky /

Coaep)kaHue

* [Ipegnocbl/IKN K CO34aHMNI0 TaK Ha3blBaeMblIX
«npeeMHnkKoB C++» (C++ successors)

 [IpeemMHuK: Carbon
» [lpyron npeeMHuk: Cpp2
* 1 cHoBa npo C++

[lpeanocbinkn

[IlpeanocblNKu

Guidelines on Minimum Standards for

° NI STIR 8397 "Guidelines on Developer Verification of Software
Minimum Standards for Developer
Verification of Software” (Oct 2021)

3.2 Supplemental: Memory-Safe Compilation

Some languages, such as C and C++, are not memory-safe. A
minor memory access error can lead to vulnerabilities such as This publicaton i avalabl fre of charge from:
privilege escalation, denial of service, data corruption, or
exfiltration of data. Many languages are memory-safe by default
but have mechanisms to disable those safeties when needed, e.qg.,
for critical performance requirements. NIST

Mational Institute of

Where practical, use memory-safe languages and limit disabling Standards and Technology
memory safety mechanisms.

https://nvipubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf

For software written languages that are not memory-safe,
consider using automated source code transformations or
compiler techniques that enforce memory safety. Requesting
memory mapping to a fixed (hardcoded) address subverts
address space layout randomization (ASLR)

https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf

p ﬂ O C b I n K M é & § National Security Agency Cybersecurity Information Sheet

Software Memory Safety

Executive summary

o N I ST I R 8 3 9 7 "G u i d e I i n eS O n Modern society relies heavily on software-based automation, implicitly trusting
developers to write software that operates in the expected way and cannot be

compromised for malicious purposes. While developers often perform rigorous testing to

M I n | m u m Stan d ard S fO r D eve I O p e r prepare the logic in software for surprising conditions, exploitable software

vulnerabilities are still frequently based on memory issues. Examples include
Ve rifi Cati O n Of S Oftware n O C't 2 0 2 1 overflowing a memory buffer and leveraging issues with how software allocates and de-
allocates memory. Microsoft® revealed at a conference in 2019 that from 2006 to 2018
70 percent of their vuinerabilities were due to memory safety issues. [1] Google® also
P N SA "S Of-tW a re M e m O r S a fe-t » found a similar percentage of memory safety vulnerabilities over several years in
y y Chrome®. [2] Malicious cyber actors can exploit these vulnerabilities for remote code
execution or other adverse effects, which can often compromise a device and be the
(N OV 2 O 2 2) first step in large-scale network intrusions.

Commonly used languages, such as C and C++, provide a lot of freedom and flexibility
in memory management while relying heavily on the programmer to perform the needed

1 1 checks on memory references. Simple mistakes can lead to exploitable memory-based
°°° M ICrOSOft revea I ed at a CO nferen Ce I n 20 1 9 th at vulnerabilities. Software analysis tools can detect many instances of memory
fro m 20 O 6 to 20 1 8 70 perce n‘t Of th e| r Vu I n era b| I |‘t | eS manag_ement i§sues and opera.ting environment options can also provide some
. protection, but inherent protections offere memory safe software languages can
tection, but inherent protect ffered by y safe software languag
We re d U e tO m em O ry Safety |SS U eS o G OOg I e a I SO prevent or mitigate most memory management issues. NSA recommends using a
: : memory safe language when possible. While the use of added protections to non-
fo u n d a S I m I I a r p e rce nta g e Of m e m O ry S afety memory safe languages and the use of memory safe languages do not provide absolute
Vu I n e ra b| I |'t | eS Over Seve ra I yea rS | n C h ro m e .. protection against exploitable memory issues, they do provide considerable protection.
Therefore, the overarching software community across the private sector, academia,
and the U.S. Government have begun initiatives to drive the culture of software
'CommOnIy used Ianguages' SUCh aS C and C++' development towards utilizing memory safe languages. [3] [4] [5]

provide a lot of freedom and flexibility in memory
management while relying heavily on the programmer
to perform the needed checks on memory references. https://media.defense.qov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
Simple mistakes can lead to exploitable memory-

based vulnerabilities.... 5

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

[lpeanocbinkn

« NISTIR 8397 “Guidelines on

Minimum Standards for Developer
Verification of Software” (Oct 2021)

« NSA “Software Memory Safety”
(Nov 2022)

o ..

o Pure Virtual Cast: “'ne C++, a rae 6e3onacHOCTb, U

npu Yem TyT aBnaumna?”
o Cpp Cast: “Safety Critical C++”

é b § National Security Agency ' Cybersecurity Information Sheet

Software Memory Safety

Executive summary

Modern society relies heavily on software-based automation, implicitly trusting
developers to write software that operates in the expected way and cannot be
compromised for malicious purposes. While developers often perform rigorous testing to
prepare the logic in software for surprising conditions, exploitable software
vulnerabilities are still frequently based on memory issues. Examples include
overflowing a memory buffer and leveraging issues with how software allocates and de-
allocates memory. Microsoft® revealed at a conference in 2019 that from 2006 to 2018
70 percent of their vuinerabilities were due to memory safety issues. [1] Google® also
found a similar percentage of memory safety vulnerabilities over several years in
Chrome®. [2] Malicious cyber actors can exploit these vulnerabilities for remote code
execution or other adverse effects, which can often compromise a device and be the
first step in large-scale network intrusions.

Commonly used languages, such as C and C++, provide a lot of freedom and flexibility
in memory management while relying heavily on the programmer to perform the needed
checks on memory references. Simple mistakes can lead to exploitable memory-based
vulnerabilities. Software analysis tools can detect many instances of memory
management issues and operating environment options can also provide some
protection, but inherent protections offered by memory safe software languages can
prevent or mitigate most memory management issues. NSA recommends using a
memory safe language when possible. While the use of added protections to non-
memory safe languages and the use of memory safe languages do not provide absolute
protection against exploitable memory issues, they do provide considerable protection.
Therefore, the overarching software community across the private sector, academia,
and the U.S. Government have begun initiatives to drive the culture of software
development towards utilizing memory safe languages. [3] [4] [5]

https://media.defense.qgov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.youtube.com/watch?v=HdFq0BLEvao
https://cppcast.com/safety-critical-cpp/

[lpeanocbinkn

« N4028, P1863 (P2028)

« NISTIR 8397 “Guidelines on

Minimum Standards for Developer
Verification of Software” (Oct 2021)

« NSA “Software Memory Safety”
(Nov 2022)

Defining a Portable C++ ABI Decument®

Date:
Herb Sutter Reply to:

Contents

L0 = 0
a0] [T T
LT o LT ot L= L A0 T = 1

o = o T o = OSSOSO

ApProach anNd Proposal..... .. iciecees s s sas e e s aesaas se s msssesmeeseassasas b snseesas e es seaaabsnsnnnnesannenranannn
Language ABL: extern “abi” ... e s e e s ean e ramn e eaaeean srsnnnneas
Standard Library ABL: stdziabii:. ... e ae e e ae e e e e s
“Implementation-Defined”: By the OS Platform OWner........... e e e
Migrating Existing Code to Expose a Stable ABI: /extern:abi or similar.......cccccoceveeveiecee e v

Beyond the Basic ABI: Helping Developers Design ABI-5afe Libraries iie e

Q: Are there other extern/namespace names? A: Yes, lots of room for bikeshedding.cccccvveveeeenns
Q: Could you provide definitions for common terms? Al SUME. ... ssssssseeesnssssceessnsees
Q: Does this interact with modules? A: It's related but distinct: source compilation vs. binary linking. .
Q: Is this related to COM? CORBA? A: No, it's orthogonal. ... s e
Q: What about efficiency? A: This is normal C++ compilation and therefore normal C++ efficiency. ...
Q: What about crossing the boundary? A: Low (possibly zero) and predictable cost.........ccoeovnenn.ee.
Q: What about servicing (e.g., inline functions)? A: Same as today: recompile.ccocvveeeeriieccinneecnn.
Q: What if | think a language ABI isn’t a problem? A: There's still the stdlib. ..o
Q: What does “stable” mean —how long is “forever”? A: Same as today: per O5 generation.
Q: Would this approach mandate the use of inline namespaces for std? A: Probably yes.
Q: Can the Itanium ABI be a starting point for the language ABI? A: Yes, at least section headings.
Q: Would platform X use the Itanium ABI? A: Probably, if it does already. ...
Q: Does this mean each OS platform vendor would publish their C++ language ABI? A: Yes.

N4028

2014-05-23

Herb Sutter
(hsutter@microsoft.com)

(T T Ve s I = < T s T = s = s I T L - I N S T S A]

e = = = S
~ B B, OO0 0o oo

https://isocpp.org/files/papers/n4028.pdf

https://isocpp.org/files/papers/n4028.pdf

[lpeanocbinkn

« N4028, P1863 (P2028)
 NISTIR 8397/

“Guidelines

on

Minimum Standards for Developer
Verification of Software” (Oct 2021)

. NSA
(Nov 2022)

“Software Memory Safety”

Document #: NA0232

Defining a Portable C++ AB|

Doc. no.: P1863R1
Date: 2020-01-09
Reply to: Titus Winters
Audience: DG, WG21

ABI - Now or Never

Note: For a complete introduction to ABI, estimates of value, lists of things to fix, consequences, and a
suggested mechanism for breaking, see P2028. LEWG and EWG committee chairs expect to have a joint
session on these two papers in Prague.

For the past few years, I've been advocating for WG21 to prioritize progress over backward compatibility.
I'm losing faith in that position, especially when it comes to ABI. The past 3 releases (C++14, C++17,
C++20) have been as ABIl-stable as we can manage. Even if WG21 chooses to make C++23 an ABI
break, we’'ll have provided binary compatibility on many platforms for more than a decade. In my
experience making broad changes to software systems, Hyrum's Law' dominates. An untold number of
users have now baked-in assumptions (wisely or not, explicitly or implicitly) about the ABI stability
guarantees of the standard library: perhaps as many as half of all C++ devs globally.

| have been keeping a list of things that WG21 should fix if we decide that we're taking an ABI break. |
cannot argue in good faith that the combined value of that list alone compares to the ecosystem cost of
an ABI break. We'll get many small improvements in API consistency, standard library code quality, etc,
but there's certainly no headlining feature that makes the cost worth it for the average user. We may even
get some conformance gains, giving library implementations that are currently out-of-spec the chance to
resolve those issues. But there is no single feature in my list that is clearly worth it.

More critically, there is a non-trivial amount of performance that we cannot recoup because of ABI
concerns. We cannot remove runtime overhead involved in passing unique_ptr by value?, nor can we
change std: :hash or class layout for unordered map, without forcing a recompile everywhere. Hash
performance has been extensively researched for years now, and between table lookup optimizations and
hash improvements, we believe we could provide an APl-compatible unordered _map/std: :hash
implementation that improves existing performance by 200-300% on average®. This is disallowed by ABI
constraints. Additional research on optimization and SSO-tuning for std: :string is also assumed to be
worth a non-trivial performance boost (1% macrobenchmark/fleet performance) - this has no APl impact,
but is disallowed by ABI constraints.

All known performance concerns that are blocked solely by ABI easily add to a performance penalty of a
few percentage points - perhaps 5-10% aggregate. That overhead is not make-or-break for the

O L WK D NL B R WNNN

e e = = =
~ B B, OO0 0o oo

https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2020/p1863rl.pdf

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1863r1.pdf

[lpeanocbiNnkKn U MUTUraumna?

 P2739R0 B. Stroustrup:

Date: 2022-12-6

“A call to action: Think seriously about

Reply to: Bjarne Stroustrup (Biarne@stroustrup.com)

'safety”; THEN do something sensible Acaltoaction

Think seriously about “safety”;

abOUt it" DeC 2022 then do something sensible about it

Bjarne Stroustrup

» P2687R0 B. Stroustrup, Gabriel Dos e
Re i S : “ D e S i g n A | t e rn at ive S fO r Cugs;mt;ns:m;;haN?:C;tpﬁrr_:dn;rdafrue,owzhochcnz 112742/-1/-

- - I I n the overarching software community across the private sector, academia, and the U.S.
y u Government have begun initiatives to drive the culture of software development towards
utilizing memory safe languages. [3] [4] [5]

MSA advises organizations to consider making a strategic shift from programming languages that
provide little or no inherent memory protection, such as C/C++, to a memaory safe language
when possible. Some examples of memory safe languages are C#, Go, Java, Ruby™, and Swift®.

That specifically and explicitly excludes C and C++ as unsafe. As is far too common, it lumps C and C++
into the single category C/C++, ignoring 30+ years of progress. Unfortunately, much C++ use is also stuck
in the distant past, ignoring improvements, including ways of dramatically improving safety.

Mow, if | considered any of those “safe” languages superior to C++ for the range of uses | care about, |
wouldn't consider the fading out of C/C++ as a bad thing, but that's not the case. Also, as described,
“safe” is limited to memory safety, leaving out on the order of a dozen other ways that a language could
{and will) be used to violate some form of safety and security.

Mow, | can’t say that | am surprised. After all, | have worked for decades to make it possible to write
better, safer, and more efficient C++. In particular, the work on the C++ Core Guidelines specifically aims
at delivering statically guaranteed type-safe and resource-safe C++ for people who need that without
disrupting code bases that can manage without such strong guarantees or introducing additional tool
chains. For example, the Microsoft Visual Studio analyzer and its memory-safety profile deliver much of
the CG support today and any good static analyzer (e.g., Clang tidy, that has some CG support) could be

https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2023/p2739r0.pdf
9

[lpeanocbiNnkKn U MUTUraumna?

The latter pins down, safety violations:

Logic errors;

Resource leaks;

Concurrency errors;

Memory corruption;

Type errors;

Overflows and anticipated conversions;
Timing errors;

Termination errors;

Design Alternatives for Type-and-Resource Safe C++ P268TRO

Doc. no. P26B7RO

Date: 22022-10-15

Project: Programming Language C++

Audience: EWG

Reply to: Bjarne Stroustrup (Bjarne@stroustrup.com)

Design Alternatives
for
Type-and-Resource Safe C++

Bjarne Stroustrup (Columbia University)

Gabriel Dos Reis (Microsoft)

Abstract

We discuss a set of alternatives for achieving type-and-resource safe programming in the context of C++.
After discussing alternatives, we propose a set of minor additions to 150 C++ to ease static analysis to
provide guarantees for code obeying a variety of coding rules.

The alternatives are examined under the constraints imposed by existing standards, tool chains, coding
styles, needs for stability, needs for flexibility, needs for performance, needs for a variety of kinds of
safety, and the need to interoperate with code written in other languages in a wide variety of application
areas supporting many billions of lines of C++ code developed by several millions of C++ programmers.

1. The problem

It is easy to break the C++ type system: misuse of unions, dangling pointers, range errors, misuse of casts,
etc. Obwiously, such breakage is usually not deliberate and can to some extent be avoided (witness the
world’s massive largely successful use of C++ in applications and infrastructure). However, the possibility
of such breakage leads to extra work for developers and occasionally to bad errors and security violations.

In our opinion, this needs to be addressed. Saying “but you can write good C++ code” is not enough
because many developers don’t. It is very hard to ensure absence of errors merely through “being
careful.” Also, “being careful” is ill-defined and subject to a variety of opinions. We need guarantees,
preferably static, against violations. Where guarantees require run-time checks (e.g., range checking), we
must guarantee that the run-time checks occur.

In our opinion, this is not a minor problem that can be ignored. Not addressing it could easily lead to
disuse of C++ in key areas where it would otherwise be the best choice of language.

Appendix A is a collection of unsafe C++ constructions and how we propose to prevent them. Each of
these examples could possibly lead to a violation for some values and is accompanied by safe alternatives.

https://www.open-std.org/jtcl/sc22/wqg21/docs/papers/2022/p2687r0.pdf

10

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf

[lpeeMHuK: Carbon

Bas0OBEIM CUHTAKCUC

package Sorting api;

fn Partition[T:! Comparable & Movable] (s: Slice(T))

var 1: 104 = -=-1;
for(e: T in s) {
1f (e <= e.lLast()) {
++1;

Swap (&s[1], &e);
}
}

return 1i;

J

fn QuickSort[T:! Comparable & Movable] (s: Slice(T))
1f (s.Size () <= 1) {

return;
}
let p: 104 = Partition(s);
QuickSort(s[:p - 11);
QuickSort (s[p+l:1):;

J

https://qgithub.com/carbon-lanquage/carbon-lang/blob/trunk/docs/images/snippets.md#quicksort

-> 104 {

{

11

https://github.com/carbon-language/carbon-lang/blob/trunk/docs/images/snippets.md#quicksort

[lpeeMHuK: Carbon

Bas0OBEIM CUHTAKCUC

package Sorting api;

(s: Slice(T)) —-> 1064 {

V ad

fn Partition[T:! Comparable Movable] :
var 1: 1064 = -1; g
tor(e: T 1n s) | interface Comparable ({

1f (e <= e.lLast()) {
++1;

Swap (&s[1], &e);

} | :

// "~ Less’

fn Less|[self:

Self] (rhs:

1S an associliated method.

Self)

-> bool;

return 1i;

J

fn QuickSort[T:! Comparable & Movable]
1f (s.Size () <= 1) {

return;
}
let p: 104 = Partition(s);
QuickSort(s[:p - 11);
QuickSort (s[p+l:1):;

J

https://qgithub.com/carbon-lanquage/carbon-lang/blob/trunk/docs/images/snippets.md#quicksort

(s: Slice(T))

12

https://github.com/carbon-language/carbon-lang/blob/trunk/docs/images/snippets.md#quicksort

[lpeeMHuK: Carbon

CMellaHHB CHMHTAKCUC

// C++ code used in both Carbon and C++:
struct Circle {
float r;

}

// Carbon exposing a function for C++:
package Geometry api;

import Cpp library "circle.h'";

import Math;

fn PrintTotalArea(circles: Slice(Cpp.Circle)) {
var area: £32 = 0;
for (c: Cpp.Circle in circles) {

area += Math.Pi1 * c.r * cCc.r;

}

Print ("Total area: {0}", area);

// C++ calling Carbon:

#include <vector>

#include "circle.h"

#include "geometry.carbon.h"
auto main (1nt argc, char** argv)

{

-> 1int

std: :vector<Circle> circles =
{{1.0}, {2.0}}5

// Carbon's "Slice’ supports
implicit construction from
"std::vector, // similar to
"std::span .

Geometry::PrintTotalArea (circles);

return 0O;

13

https://qgithub.com/carbon-lanquage/carbon-lang/blob/trunk/docs/images/snippets.md#mixed

https://github.com/carbon-language/carbon-lang/blob/trunk/docs/images/snippets.md#mixed

Carbon

(Gereference)

Gev pt Cn
» S < a0 £ 0 > g » repeCively

nd » respectively

Ditaine AND, XOR and OR

https://en.cppreference.com/w/cpp/lanquage/operator _precedence

nu

htt p;;ﬂ;_"_‘f_g‘,.[})\ 1b.com/cart)_(_}VYA‘__IV.JVU guage /s sarbor)__';ﬂjj. Q“J),IL’} y/trunk/docs/desy gn/expressi ons/README .md

Carbon Language: Syntax and trade-offs: https://www.youtube.com/watch?v=9Y2ivB8Vals by Jon Ross-Perkins

14

https://www.youtube.com/watch?v=9Y2ivB8VaIs

[lpeeMHuK: Carbon

Language Goals

We are designing Carbon to support:

¢ Performance-critical software

e Software and language evolution

e Code that is easy to read, understand, and write

e Practical safety and testing mechanisms

e Fast and scalable development

e Modern OS platforms, hardware architectures, and environments

e Interoperability with and migration from existing C++ code

While many languages share subsets of these goals, what distinguishes Carbon is their combination.

We also have explicit non-goals for Carbon, notably including:

e A stable application binary interface (ABI) for the entire language and library

e Perfect backwards or forwards compatibility

https://qgithub.com/carbon-lanquage/carbon-lang

15

https://github.com/carbon-language/carbon-lang

[lpeeMHuK: Carbon

Roadmap

Table of contents

e Objective for 2023: get ready to evaluate the Carbon Language.
e Key results in 2023

o A concrete definition of our Minimum Viable Product for evaluation, the 0.1 language
o Complete design coverage of the 0.1 language's necessary features

o Complete 0.1 language implementation coverage in the Carbon Explorer

o A toolchain that can build a minimal mixed C++ and Carbon program

o Give talks at 2-3 conferences covering 3-4 different Carbon topics

e Beyond 2023

o Potential 2024 goals: ship a working 0.1 language for evaluation
o Potential 2025-2026 goals: finish 0.2 language, stop experimenting
o Potential goals beyond 2026: ship 1.0 language & organization

https://qgithub.com/carbon-lanquage/carbon-lang/blob/trunk/docs/project/roadmap.md

16

https://github.com/carbon-language/carbon-lang/blob/trunk/docs/project/roadmap.md

[lpeeMHuK: Carbon

Goals

The toolchain represents the production portion of Carbon. At a high level, the toolchain’s top
priorities are:

Tekywmnn cTaTyc:
« toolchain (unstable) ;

Correctness.

Quality of generated code, including performance.
Compilation performance.

Quality of diagnostics for incorrect or questionable code.

TODO: Add an expanded document that details the goals and priorities and link to it here.

High-level architecture

The typical compilation flow of data is:

Load the file into a SourceBuffer.

Lex a SourceBuffer into a TokenizedBuffer.
Parse a TokenizedBuffer into a ParseTree.
Transform a ParseTree into a SemanticsiR.
Lower the SemanticsIR to an LLVM Module.

kW =

This flow is still incomplete: code generation, using LLVM, is still required.

https://docs.google.com/document/d/IRRYMm42osyaghl2LyjriockY CutO5dOf8 Abu50kTrkX0/edit?pli=1&resourcekey=0-kHygOESbOHmMzZphUbtLrTw#heading=h.n1z6sen0ztt3

17

https://docs.google.com/document/d/1RRYMm42osyqhI2LyjrjockYCutQ5dOf8Abu50kTrkX0/edit?pli=1&resourcekey=0-kHyqOESbOHmzZphUbtLrTw#heading=h.n1z6sen0ztt3

[lpeeMHuK: Carbon

TekyLwnm ctaTtyc:
« toolchain (unstable) ;

« explorer (“...is an interpreter

rather than a compiler...”

)

£ Compiler Explorer X +

C (i carbon.compiler-explorer.com

=s EXPLORER /-7 More™ Templ
Carbon source #1 & X
A~ B +- Vv Carbon

1 package sample api;

2

3 fn Square(x: 132) -» 132 {
4 return x * x;

5}

6

7 fn Main() -» i32 {

8 return Square(12);

9 }

10

4

Explorer (trunk) (Editor#1) & X
Explorer (trunk) v 2 @ Compiler options..
A~ QOutput.~ WFilter..v B Libraries J Overrides =+ Add new..~
1 FREREREERE gource program FEEEEERsRR
2 fn square (x: i32)-> i32 {
3 {
4 return (x * x);
5)
6
7
8 fn mMain ()-» i32 {
9 {
10 return Square(12);
1}
12
12}
14 REREREERERE pesolving names FEEEEmsRkE
15 “ resolving control flow #¥#x#xsss
16 RXEERRESY type checking ¥¥¥x®ssxx
17 Omitting prelude type checking traces...
18 Finished prelude, resuming traces...
19 ** declaring function Square
20 checking TuplePattern (x: 132)
21 checking BindingPattern x: i32
22 checking ExpressionPattern i32
23 checking IntTypelLiteral 132
2 {
25 stack:
26 memory:
27 1
28 --- step exp 132 .8. (/app/example.carbon:3) --->
29 |
3@ stack:
21 mMamary

c EOutput{O/‘CI) Explorer (trunk) 1

Check out our stats page

- 569ms (358848 |

Sponsors i

¢ Add tool... »

https://carbon.compiler-explorer.com/

18

https://carbon.compiler-explorer.com/

[pyron npeemHuk: Cpp2 (cppfront)

The C++ Conference 2 2 September 12th-16th

Motivation & approach

“50x safer” means
- 98% fewer CVEs & bugs
in these categories

“10x simpler” means

90% less total guidance
Herb Sutter to teach in C++ books

and courses

Can C++ be

10x simpler & safer... ?
Video Sponsorship Provided By:

ansatz think-cell =
it

https://www.youtube.com/watch?v=ELeZAKCNA4tY

19

https://www.youtube.com/watch?v=ELeZAKCN4tY

[pyron npeemMHuk: Cpp2 (cppfront)

#include <iostream>

#include <string> v eir :
name: () -> std::string = { within C++, there is a much smaller and

s: std::string = "world"; cleaner language struggling to get out”

decorate (s) ;

return s; Bjarne Stroustrup, The Design and Evolution of C++

J

decorate: (inout s: std::string) = {
S — "[" _|_ S _|_ "]";

}

auto main() -> int {

// name () ;
std: :cout << "Hello " << name () << "\n";

J

https://github.com/hsutter/cppfront/blob/main/regression-tests/mixed-hello.cpp?

20

https://github.com/hsutter/cppfront/blob/main/regression-tests/mixed-hello.cpp2

[pyron npeemMHuk: Cpp2 (cppfront)

#include <iostream>

#include <string>

name: () —-> std::string = {
s: std::string = "world";
decorate(s) ;
return s;

}
decorate: (inout s: std::string) = { _ name : type = value

S="["+S+ n]n.
J

auto main() -> int {
// name () ;
std: :cout << "Hello " << name () << "\n";

J

https://github.com/hsutter/cppfront/blob/main/regression-tests/mixed-hello.cpp2
21

Opyron npeemHuk: Cpp2 (cppfront)

#include <iostream>

#include <string>
name: () —-> std::string = {
s: std::string = "world";

cMeLLlaHHbIN
CUHTaKCUC

decorate (s) ;
return s;

}
decorate: (inout s: std::string) = { _ name : type = value

g — "[" _I_ g _I_ "]"’.
J

auto main() -> int {
// name () ;
std: :cout << "Hello " << name () << "\n";

J

https://github.com/hsutter/cppfront/blob/main/regression-tests/mixed-hello.cpp2
22

[pyron npeemHuk: Cpp2 (cppfront)

#include <iostream>

#include <string>
name: () —-> std::strinw
s: std::string = "wo

CMeLUaHHbIN
CUHTaAKCuUC

decorate (s) ;
return s;

J

decorate: (inout s: std::string) =
S — "[" _I_ S _I_ "]"’.

{ name : type = value

J

auto main() -> int {
// name () ;
std: :cout << "Hello " << name ()

pure C++ syntax

< n\nn ;

J

https://github.com/hsutter/cppfront/blob/main/regression-tests/mixed-hello.cpp2
23

[pyron npeemMHuk: Cpp2 (cppfront)

Roadmap of where design decisions lead

OCHOBHbIe Lenu dJibTEPHATNBHOIO

[]
*

Auto-optimize to copy when “cheap” Enable one function to naturally and
(ABI-defined) and move from rvalue ————— efficiently do both (by making “from”

* WcnpaBrieHne NoBeAeHUst N0 YMOYAHMUIO e

Express params by usage Let “out” params initialize s Unify initialization

°
£ iy hat” not “how” Treat PODs and non-PODs uniformly, Guarantee init-hefore-use uniformly
o accept uninitialized (and construct) or for PODs and non-PODs (no artificial
in, inout, out, move, forward

Foundation Regularization Unification

initialized (and assign) init, no failure to init)

Distinguish decl vs. init Eliminate special mem-init-list
. C I I On b 3 O B a H M e C O B e M e H H O ro I I Declaration only = allocate storage All init in ctor body; efficient (no Enable one function to naturally and
only; uniform for PODs/non-PODs, = artificial default init) and expressive ~=——————>- efficiently do both (by making “this” be

dead write opt for non-PODs (flexible init ordering) an init-capable “out” parameter)

— H a LI M H aﬂ C C++20); Make “this" explicit

* (OTKas oT Heb6e30MnaCHbIX KOHCTPYKLIUIA
union, agpecHasi apudmeTunka etc) ;

® I e 3 O n a C H O CT b T M n O B M n a M ﬂ T M n O data members equally Y SR distinct inheritance and membership
.
M On LI a H M I-O Eliminate need for preprocessor
, Alternatives in place for all important

uses of the preprocessor; optionally,
make unified definitions macro-immune

* YMeHbLUEHUNE CITIOXXHOCTU UCNOJIb30BaHUA

P Eliminate member functions’ special Enable one function to naturally and
Make the “this” parameter 0 . hr 0 o
visible and non-magic —_— syntactic decorations, eliminate efficiently do all four (specific ones can
g lambdas’ syntactic differences still be written but are rarely needed)

Types

Meta

Allow statements outside function Compile-time code can generate new Update defaults (e.g., copy) + generated
bodies (incl. compile-time branches, / types, including modified copies of funcs (e.g., comparison) with explicit
other types (e.g., automates wrapping) optin (no need for =default/=delete)

A3blKa;

Compile-time reflection -/ Metaclasses, generalized concepts Express language facilities as libs

Mowrecims i mostinatwe ____, S cdenel | G fererle e,
apply defaults and generate functions etc. as ordinary libraries
Unified function calls: f(x,y) =x.f(y) Explicit and named virtual overrides
Reduced ceremony for short funcs: {} optional on single-stmt Stack arrays with run-time size
funcs (as with blocks) + return optional on single-expr funcs Unified “.” member/scope selection (e.g., std.swap(x,y))
Multiple and named return values Simplified name lookup: Ignore inaccessible functions, fix ADL

Destructurers (conversion operators returning multiple values) by removing unnecessary associated scopes + use this

https://qgithub.com/hsutter/cppfront#epilog-2016-roadmap-diagram 24

https://github.com/hsutter/cppfront#epilog-2016-roadmap-diagram

& Compiler Explorer X +

“Simple and safe starts with... main”

C @& godboltorg ® W
= Egﬂg‘égg Add..>¥ More~ Templates [Becomea Performance Ninja! x} ‘ Sponsors intel & CONAN sonar[ig; | Share ¥ Pc
Cpp2-cppfront source #1 & X O X cppfront trunk (Editor #1) & X
A~ BSave/load + Addnew..v WVVim @& Cpp2-cppfront cppfront trunk v @ @ Compiler options..

. A~ QOutput.~ YFilter..~ [Libraries / Overrides =+ Addnew..~ 4 Addtool..~
2 main: (args) =
3 | std::cout << "This program's name is (args[@])%"; - i
* 3 //=== Cpp2 type declarations =================—=———————————————————————————————o
A
5
6 #include "cpp2util.h”
.
8
9
18 //=== Cpp2 type definitions and function declarations ===========================
R 11
Bounds checking on args 2 - | .
12 auto main(int const argc , char const™ const® const argv) -»> int;
Args param has type e
. . 15
V€Ct0r< Strlng_VIeW> 16 //=== Cpp2 function definitions ===========================s=====================
17
18
19 auto main(int const argc , char const® const* const argv) -> int {
20 auto args = cpp2::make_args(argc_, argv_);
21 std::cout << "This program's name is " + cpp2::to string(cpp2::assert_in bounds(args, @)); }

C' B Output (2/0) cppfronttrunk j -cached6528) |= Compiler License

https://qodbolt.org/

https://herbsutter.com/

https://godbolt.org/
https://herbsutter.com/

{& Compiler Explorer X +

C @ godboltorg 2 Yr
— COMPILER Add..> More~> Templates Become a Performance Ninja! = Sponsors i < conan sonarlint | share = pe
EXPLORER P) I %
Cpp2-cppfront source #1 £ X O X cppfront trunk (Editor #1) & X
A~ BSave/load + Addnew..> VVim Cpp2-cppfront A cppfront trunk v 4 @ Compiler options..
PPz-Cpp PP P P

T TR

A~ QOutput.~ YFilter..~ [Libraries / Overrides =+ Addnew..~ 4 Addtool..~
main: (args) =

| std::cout << "This program's name is (args[@])%";

B p

1
2
3 //=== Cpp2 type declarations ===================——==——==——c——c—————————————————oc
A
5
6

#include "cpp2util.h”

//=== Cpp2 type definitions and function declarations ===========================

auto main(int const argc , char const® const* const argv_) -> int;

//=== Cpp2 function definitions ===c=======

auto main(int const argc_, char const® const* const argv) -> int {
auto args = cpp2::make_args(argc_, argv_);
std::cout << "This program's name is " + cpp2::to string(cpp2::assert_in bounds(args, @)); }

CTaHgapTHaa 6ubnunoTeka «m3
Kopooku» 6e3 #include / import etc

C' B Output (2/0) cppfronttrunk j -cached6528) |= Compiler License

“Simple and safe starts with... main” ‘

https://qodbolt.org/

https://herbsutter.com/

26

https://godbolt.org/
https://herbsutter.com/

N cHoBa npo C++

« P2759 “DG opinion on safety for ISO C++”

« Static, dynamic code analysis remains (wow!)
« Safety’s (and its understanding) is evolving too

« Backwards compatibility!
* Profiles!

Opinion on Satety for SO C++ DG D2759R0

Doc. no.: P2759R0
Date: 2023-01-15

Programming Language C++
Audience: All WG21

Reply to: Bjarne Stroustrup (bjame@stroustrup.com)

DG OriNiON ON SAFETY FOR ISO C++

H. Hinnant, R. Orr, B. Stroustrup, D. Vandevoorde, M. Wong

Rewvision History

& RO0:lan 2023 (Pre-lssaguah):
o initial paper

Table of Content

1 Abstract 1
2 Current state 2
3 Basic Tenets 6
4 The Process 6
5 Towards a safer future 7
& Call to action 8
7 Acknowledgements 8
8 References 9
1 Abstract

This paper describes the opinion of the DG on the matter of Safety of C++, starting post-Kona 2022, As
this is an evolving area, we anticipate there will be continued refinement of this opinion and as such, DG
has unanimously agreed to work on a paper to guide that opinion. We do not aim to define a solution.
We do aim to define the structure needed to evolve such a solution that will work for C++ in all domains
in a coherent manner. We aim to define the process, and offer opinion on the following

basic tenets

satety-by-default, or opt-in,

safety as part of tooling, or built-in to the language, and by extension, the compiler
backwards compatibility

https://www.open-std.org/jtc1l/sc22/wqg21/docs/papers/2023/p2759r0.pdf

27

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2759r0.pdf

Val

The Val Programming Language
Language tour
Roadmap

Community discussion

Hosted on GitHub Pages — Theme by orderedlist

https://www.val-lang.dev/

Val is a research programming lanquage to explore the concepts of mutable
value semantics and generic programming for high-level systems
programming.

Val aims to be:

» Fast by definition: Val is compiled ahead-of-time to machine code
and relies on its type system to support in-place mutation and avoid
unnecessary memory allocations. Val avoids hidden costs such as
implicit copies and therefore avoids heavy dependence on an
optimizer for basic performance.

» Safe by default: Val's foundation of mutable value semantics ensures
that ordinary code is memory safe, typesafe, and data-race-free. By
explicit, auditable opt-in, programmers can use unsafe constructs for
performance where necessary, and can build safe constructs using
unsafe ones.

» Simple: Val borrows heavily from Swift which has demonstrated a
user-friendly approach to generic programming and deep support for
value semantics. Val's programming model strengthens and extends
this support, while de-emphasizing reference semantics and avoiding
the complexities that result from trying to make it statically safe (e.qg.,
memory regions, lifetime annotations, etc.).

The language tour gives an overview of Val's features. The language
specification and IR specification (work in progress) provides detailed
information about Val’s syntax and semantics.

Val is under active development and is not ready to be used yet. The code of
the compiler is open source and hosted on GitHub. The current status of
the project is described on our roadmap page.

28

https://www.val-lang.dev/

Mutable Value Semantics

vector<int> v = {3, 2, 1};

auto broken less(int left, 1nt right) -> bool {
v.push back(v.front()); // !
return left < right;

vold test () {
sort (v.begin(), v.end(), broken less);

29

Mutable Value Semantics

vector<int> v = {3, 2, 1};

auto broken less(int left, int right) -> bool ({

v.push back(v.front()); // ! modification requires
exclusive access! Law of Exclusivity (LoE)

return left < right;

vold test () {

//sort (v.begin(), v.end(), broken less);
sort (&v, broken less);

30

Mutable Value Semantics

swap (&x[1], &x[3]1):
// ~"LoE violation

-> x.swapAt (i, 7J):;

A Future of Value Semantics

— and Generic Programming
/ / i p— —|— —|— i —|— j_ —I— —I— o — - Dave Abrahams | Principal Scientist S
4 Dave Abrahams Adobe Software Technology Lab (STLab)
R . . _Dave Abrahale S
/ / a l S O L O E V l O l a t l O n A Future of Value Semantics Dimitri Racordon | Postdoctoral Researcher \\ A N

and Generic Programming Northeastern University
Part 1 of 2

JET
(Y9 BRAINS

— CppNow.org

https://www.youtube.com/watch?v=4Ri8bly-dJs

31

https://www.youtube.com/watch?v=4Ri8bly-dJs

Val

Roadmap: (shortened)
« 2023 - Q1/Q2

 Deliver an alpha version of Val
 Validate the language’s design
« Access its usability

« 2023 — Q3/Q4

The Val Programming Language
Language tour
Roadmap

Community discussion

https://www.val-lang.dev/pages/implementation-status.html

« Complete the design of the language
* Implement a standard library
« Write and publish a specification

32

https://www.val-lang.dev/pages/implementation-status.html

Can C++ be
10x Simpler & Safer?

(Simplifying C++ #9 of N)

HERB SUTTER

22 September 1 22h-106th

https://www.youtube.com/watch?v=ELeZAKCN4tY&t=86s

https://www.youtube.com/watch?v=ELeZAKCN4tY&t=86s

Cnacumbo

