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- Review some other attempts to work with RDBMS reactively

- How typical R2DBC drivers work

- Reactive != Asynchronous

- We’re also going to talk about spring-data-r2dbc and challenges it faces

- What should you do? 

Agenda



Evolution of Reactive RDBMS 

drivers







An easy fix!





ADBA - Asynchronous Database Access















What happened to ADBA?1

1https://mail.openjdk.org/pipermail/jdbc-spec-discuss/2019-September/000529.html

1. Project Loom Firbes solve a lot of problems that reactivity is targeting, but 

not all.

2. The cost for writing reactive applications is harder to “test, debug, maintain 

and understand”.

3. Considering the trade-offs, that just not worth it.



Reactive APIs for Databases
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Blocking EventLoop Thread is not fatal 

1. Because multiple Channels are handled by a single Netty EventLoop 

Thread, the block time is significantly reduced

2. The EventLoop Thread is typically not the thread from the Schedulers pool 

used for reactive assembly pipeline
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recv buffer

Windows size : 0



We already have fetch size!



We already have fetch size!



Spring-Data-R2DBC 

restrictions
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Why ReactiveRelation<T> is 
controversial 

1. We’re polluting our domain model with reactive stack, which is not a very 

good thing

2. There is no clear mutation abilities. E.g. there is no way to add an element 

to a Flux.

3. Transaction boundaries for reactive relations have to be honored. There is 

no out of the box solution for that. 











T
ra

n
s
a

c
ti
o
n



T
ra

n
s
a

c
ti
o
n



T
ra

n
s
a

c
ti
o
n



T
ra

n
s
a

c
ti
o
n





Relations in Reactive World. 
Conclusion

1. In general, there are a couple of ways to do so, and all of them have some 

flaws



Relations in Reactive World. 
Conclusion

1. In general, there are a couple of ways to do so, and all of them have some 

flaws

2. However, in general, it is possible to implement, but again, considering the 

trade-offs.



Relations in Reactive World. 
Conclusion

1. In general, there are a couple of ways to do so, and all of them have some 

flaws

2. However, in general, it is possible to implement, but again, considering the 

trade-offs.

3. However, first level of nesting can be solved relatively easy



Relations in Reactive World. 
Conclusion

1. In general, there are a couple of ways to do so, and all of them have some 

flaws

2. However, in general, it is possible to implement, but again, considering the 

trade-offs.

3. However, first level of nesting can be solved relatively easy

4. Virtual threads and Cursors can be a good option. 



Thank you for your 

attention!
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