
Spring Data R2DBC. I’m 
telling you the last time

Mikhail Polivakha



1

Поливаха Михаил

● Active OpenSource member 

(including Spring projects)

● Technical Writer

● Spring Айо Community board 

member

Contacts:

● Telegram: @mipo256

● GitHub: mipo256

● Blog: mpolivaha.com

● Email: 

mikhailpolivakha@gmail.com



- Review some other attempts to work with RDBMS reactively

- How typical R2DBC drivers work

- Reactive != Asynchronous

- We’re also going to talk about spring-data-r2dbc and challenges it faces

- What should you do? 

Agenda



Evolution of Reactive RDBMS 

drivers







An easy fix!





ADBA - Asynchronous Database Access















What happened to ADBA?1

1https://mail.openjdk.org/pipermail/jdbc-spec-discuss/2019-September/000529.html

1. Project Loom Firbes solve a lot of problems that reactivity is targeting, but 

not all.

2. The cost for writing reactive applications is harder to “test, debug, maintain 

and understand”.

3. Considering the trade-offs, that just not worth it.



Reactive APIs for Databases





TCP



TCP

SELECT * FROM my_entity



TCP

SELECT * FROM my_entity

RECV Buf



TCP

SELECT * FROM my_entity

RECV Buf

read/recv



TCP

SELECT * FROM my_entity

RECV Buf

read/recv



RECV Buf

read/recv



RECV Buf

read/recv



RECV Buf

read/recv



RECV Buf

read/recv



RECV Buf

read/recv



RECV Buf

read/recv



Blocking EventLoop Thread is not fatal 

1. Because multiple Channels are handled by a single Netty EventLoop 

Thread, the block time is significantly reduced



Blocking EventLoop Thread is not fatal 

1. Because multiple Channels are handled by a single Netty EventLoop 

Thread, the block time is significantly reduced

2. The EventLoop Thread is typically not the thread from the Schedulers pool 

used for reactive assembly pipeline



recv buffer



recv buffer



recv buffer



recv buffer



recv buffer



recv buffer

recv()



recv buffer

recv()



recv buffer

recv()



recv buffer

recv()



recv buffer



recv buffer

Windows size : 0



We already have fetch size!



We already have fetch size!



Spring-Data-R2DBC 

restrictions











Why ReactiveRelation<T> is 
controversial 

1. We’re polluting our domain model with reactive stack, which is not a very 

good thing



Why ReactiveRelation<T> is 
controversial 

1. We’re polluting our domain model with reactive stack, which is not a very 

good thing

2. There is no clear mutation abilities. E.g. there is no way to add an element 

to a Flux. 



Why ReactiveRelation<T> is 
controversial 

1. We’re polluting our domain model with reactive stack, which is not a very 

good thing

2. There is no clear mutation abilities. E.g. there is no way to add an element 

to a Flux.

3. Transaction boundaries for reactive relations have to be honored. There is 

no out of the box solution for that. 











T
ra

n
s
a

c
ti
o
n



T
ra

n
s
a

c
ti
o
n



T
ra

n
s
a

c
ti
o
n



T
ra

n
s
a

c
ti
o
n





Relations in Reactive World. 
Conclusion

1. In general, there are a couple of ways to do so, and all of them have some 

flaws



Relations in Reactive World. 
Conclusion

1. In general, there are a couple of ways to do so, and all of them have some 

flaws

2. However, in general, it is possible to implement, but again, considering the 

trade-offs.



Relations in Reactive World. 
Conclusion

1. In general, there are a couple of ways to do so, and all of them have some 

flaws

2. However, in general, it is possible to implement, but again, considering the 

trade-offs.

3. However, first level of nesting can be solved relatively easy



Relations in Reactive World. 
Conclusion

1. In general, there are a couple of ways to do so, and all of them have some 

flaws

2. However, in general, it is possible to implement, but again, considering the 

trade-offs.

3. However, first level of nesting can be solved relatively easy

4. Virtual threads and Cursors can be a good option. 



Thank you for your 

attention!



1

Поливаха Михаил

● Active OpenSource member 

(including Spring projects)

● Technical Writer

● Spring Айо Community board 

member

Contacts:

● Telegram: @mipo256

● GitHub: mipo256

● Blog: mpolivaha.com

● Email: 

mikhailpolivakha@gmail.com


