
Optimizing Python startup time
by code data share

Yichen Yan
2024.9.18



• I work at Alibaba Cloud as a senior engineer

• We are the programming languages and compiler team at Alibaba Cloud
• Focusing on languages (C&C++, Java, etc.), runtime (PyTorch, etc.), supporting 

upper layer cloud and AI infrastructure

• Current products include AJDK (AlibabaJDK), Alibaba GCC/LLVM, AI software 
stack



• https://github.com/alibaba/code-data-share-for-python

code-data-share-for-python

https://github.com/alibaba/code-data-share-for-python


Current status of Python startup1



Status of Python startup

• Python is popular
• Widely used in startup-time sensitive scenario (e.g. FaaS)

• Recently, Python has been used in complex AI application
• involve a lot of third party packages
• importing `torch` needs ~1s

Overview



Status of Python startup

• Importing a python package contains:

• If pyc file does not exist, read py file, compile python source code to bytecode, 
then marshall bytecode to pyc file;

• If pyc file exists, read pyc file, and get bytecode by unmarshalling;
o pyc file does not store the exact content of bytecode, it’s a serialized format;
o pyc file profides significant speedup (>50%) when launching python application

• After get bytecode, python interpreter shall execute the bytecode to get an in-
memory package.

Abstract import mechanism



Status of Python startup

• `python –Ximporttime –c ‘import torch’` to see detailed imported package and 
time

• Python audit event to see file open

• More than 1000 imported (sub)packages
• ~1000 file read
• Presumably more IO op, e.g. stat

Analysis of `torch` package



Status of Python startup

• Importing a package contains three major part

• IO, e.g. read file, check file exists, …
• Unmarshall
• Bytecode execution

• Due to the dynamic feature of Python, bytecode execution is hard to eliminate.
• We focus on trying to reduce the first two part

Analysis of `torch` package (2)



Introducing class data sharing2



AppCDS in Java

• Commercial feature in Oracle JDK 8/9

• Open source since OpenJDK 10 (JEP 310, 2018)

• Default CDS Archives since OpenJDK 12 (JEP 341, 2019)

History

Adoption

JVM Memory

Java Heap

class methods
Archive file

class methods mmap’ed

• Fast startup

• Reduced footprint

• CDS enabled: pointed to file-mapped memory

• CDS disabled: parsed from class files

• Alibaba Cloud SAE using AppCDS in production env
• 30% startup time reduction

Metaspace

Location independent class object



CDS in Python?

• Python’s package is constructed dynamically at runtime, via bytecode
• There’s no simple solution to “cache” the actual package

• Reduce overhead to get bytecode

• Memory mapped bytecode
• Single file IO
• No unmarshalling



Module construction in Python

• Code object (PyCodeObject)
• eval_module(code, {})

• Python object: 
string,tuple,bytes,int,float,double,complex,constants

• C struct: PyCodeObject

• Make these data types are memory-mappable



Implementation3



Memory map

code object

co_code
co_consts

file-mapped archive

Make a compact memory image by recursive copy.

• Copy code object to a mapped memory

• Archive has fixed address



Memory map (2)

archive

Code_Type

Bytes_Type

Tuple_Type

Py_None

.data section(dump)
Code_Type

Bytes_Type

Code_Type

Py_None

.data section(share)
ASLR shifted

❗

MAP_FIXED ensures that the pointer inside the archive is correct, but 
ASLR causes the pointer to the data section invalid.
Iterating over the object graph to fix the pointers.

code obj

co_code

co_consts

• Address space layout randomization
• ASLR is enabled on most platform

• Patch to-heap reference during loading
• PyObject.ob_type
• PyTypeObject (ASLR shifted)



GC

• Python uses a reference-based GC

• 3 generations
• Each generation is a linked list, containing all objects in this generation

• Reference counter are managed by interpreter
• When reaching zero, object will be deallocated

• We already these objects are all accessible, and will live “forever”
• Extra reference count for in-archive object to avoid GCed
• Since 3.12, _Py_SetImmortal



Implementing each type

• Constants
• None
• True/False
• Ellipsis



Implementing each type

• Constants
• Simple objects (trivial layout)
• float
• complex



Implementing each type

• Constants
• Simple objects (trivial layout)
• Variable-length objects
• int
• bytes
• string(unicode)



Implementing each type

• Constants
• Simple objects (trivial layout)
• Variable-length objects
• Nested object
• PyTuple_Type
• PyFrozenSet_Type

• Similar with varlen objects
• Allocate n pointer slot first, then copy each object, heap growth after the 

container object 



Implementing each type

• Constants
• Simple objects (trivial layout)
• Variable-length objects
• Nested object
• PyCodeObject



Implementing each type

• Constants
• Simple objects (trivial layout)
• Variable-length objects
• Nested object
• PyCodeObject

• rapidly evolving
• New JIT feature



Patching type pointer

• Calculate shift based on constant address
• Recursively find all type pointer

• Update pointer



Optimization4



String intern

• String comparing falls into slow path

• Python holds a dict for all interned string (string singleton)
• Newly create string with same content will be from the dict

• Make string interned as much as possible

• When loading cds archive
1. If a string not interned yet, intern string
2. If the string is already interned, update in-archive reference

• Avoid duplicated string with same content



Page fault

• Whole archive needs to be loaded

• Trigger page fault before really used
• MAP_POPULATE
• Manually (write to each byte: ((char volatile *)shm)[i] += 0)



Runtime5



Runtime support

• Which packages to archive

• Run real workload first, hook importlib, record imported packages,
• Run a special script provided by cds, dump all traced packages into one single 

archive
• Run with cds, hook importlib again, get speedup



Runtime support (FaaS)

• Integrated into FaaS infrastructure

• Users don’t need to manually run application with extra argument

• First run will be traced, archive will be automatically generated
• Further runs will be accelerated



Performance6



Performance



Challenges and Future work7



Future work

• Python 3.13 support

• How to patch mapped memory faster? static key?

• Benefits from JIT information?

• Archive the real package

Static key: https://docs.kernel.org/staging/static-keys.html

https://docs.kernel.org/staging/static-keys.html



